Friction stir processing is performed on RZ 5 Mg alloy to produce surface metal matrix composites reinforced with hard reinforcement particles. Boron carbide, multiwalled carbon nanotubes, and a mixture of zirconia and alumina particle reinforcements were introduced. The developed surface composites (SCs) exhibited lower wear rates at various normal loads than the base RZ 5 Mg alloy owing to their improved microhardness. The wear resistance of the composites was 1.2–1.9 times greater than the base alloy, and hence, the wear rates were 18–50% lower than the base alloy. Maximum reduction in wear rate is observed in B4C-reinforced SC. Abrasion, adhesion, and oxidative wear mechanisms are operational during the wear test performed at loads ranging between 10 N and 75 N.

References

References
1.
López
,
A. J.
,
Rodrigo
,
P.
,
Torres
,
B.
, and
Rams
,
J.
,
2011
, “
Dry Sliding Wear Behaviour of ZE41A Magnesium Alloy
,”
Wear
,
271
(
11–12
), pp.
2836
2844
.
2.
Jamshidijam
,
M.
,
Akbari-Fakhrabadi
,
A.
,
Masoudpanah
,
S. M.
,
Hasani
,
G. H.
, and
Mangalaraja
,
R. V.
,
2013
, “
Wear Behavior of Multiwalled Carbon Nanotube/AZ31 Composite Obtained by Friction Stir Processing
,”
Tribol. Trans.
,
56
(
5
), pp.
827
832
.
3.
Lu
,
D.
,
Jiang
,
Y.
, and
Zhou
,
R.
,
2013
, “
Wear Performance of Nano-Al2O3 Particles and CNTs Reinforced Magnesium Matrix Composites by Friction Stir Processing
,”
Wear
,
305
(
1–2
), pp.
286
290
.
4.
Arora
,
H. S.
,
Singh
,
H.
, and
Dhindaw
,
B. K.
,
2013
, “
Wear Behaviour of a Mg Alloy Subjected to Friction Stir Processing
,”
Wear
,
303
(
1–2
), pp.
65
77
.
5.
Cinta Lorenzo-Martin
,
M.
, and
Oyelayo
,
O. A.
,
2014
, “
Surface Layer Modification of 6061 Al Alloy by Friction Stir Processing and Second Phase Hard Particles for Improved Friction and Wear Performance
,”
ASME J. Tribol.
,
136
(
4
), p.
044501
.
6.
Fida Hassan
,
S.
,
Al-Qutub
,
A. M.
,
Tun
,
K. S.
, and
Gupta
,
M.
,
2015
, “
Study of Wear Mechanisms of a Novel Magnesium Based Hybrid Nanocomposite
,”
ASME J. Tribol.
,
137
(
1
), p.
011601
.
7.
Lim
,
C. Y. H.
,
Lim
,
S. C.
, and
Gupta
,
M.
,
2003
, “
Wear Behaviour of SiCp Reinforced Magnesium Matrix Composites
,”
Wear
,
255
(
1–6
), pp.
629
637
.
8.
Nguyen
,
Q. B.
,
Sim
,
Y. H. M.
,
Gupta
,
M.
, and
Lim
,
C. Y. H.
,
2015
, “
Tribology Characteristics of Magnesium Alloy AZ31B and Its Composites
,”
Tribol. Int.
,
82
(Pt. B), pp.
464
471
.
9.
Lim
,
C. Y. H.
,
Leo
,
D. K.
,
Ang
,
J. J. S.
, and
Gupta
,
M.
,
2005
, “
Wear of Magnesium Composites Reinforced With Nano-sized Alumina Particulates
,”
Wear
,
259
(
1–6
), pp.
620
625
.
10.
Uthayakumar
,
M.
,
Aravindan
,
S.
, and
Rajkumar
,
K.
,
2013
, “
Wear Performance of Al–SiC–B4C Hybrid Composites Under Dry Sliding Conditions
,”
Mater. Des.
,
47
, pp.
456
464
.
11.
Tang
,
F.
,
Wu
,
X.
,
Ge
,
S.
,
Ye
,
J.
,
Zhu
,
H.
,
Hagiwara
,
M.
,
Schoenung
., and
Julie
,
M.
,
2008
, “
Dry Sliding Friction and Wear Properties of B4C Particulate-Reinforced Al-5083 Matrix Composites
,”
Wear
,
264
(
7–8
), pp.
555
561
.
12.
Shanthi
,
M.
,
Nguyen
,
Q. B.
, and
Gupta
,
M.
,
2010
, “
Sliding Wear Behaviour of Calcium Containing AZ31B/Al2O3 Nanocomposites
,”
Wear
,
269
(
5–6
), pp.
473
479
.
13.
Taltavull
,
C.
,
Rodrigo
,
P.
,
Torres
,
B.
,
López
,
A. J.
, and
Rams
,
J.
,
2014
, “
Dry Sliding Wear Behavior of AM50B Magnesium Alloy
,”
Mater. Des.
,
56
, pp.
549
556
.
14.
Hu
,
H.-J.
,
Sun
,
Z.
,
OU
,
Z.-W.
, and
Wang
,
X.-Q.
,
2017
, “
Wear Behaviors and Wear Mechanisms of Wrought Magnesium Alloy AZ 31 Fabricated by Extrusion-Shear
,”
Eng. Failure Anal.
,
72
, pp.
25
33
.
15.
Bala Srinivasan
,
P.
,
Blawert
,
C.
, and
Dietzel
,
W.
,
2009
, “
Dry Sliding Wear Behaviour of a Conventional and Recycled High Pressure Die Cast Magnesium Alloys
,”
Mater. Charact.
,
60
(
8
), pp.
843
847
.
16.
Chen
,
H.
, and
Alpas
,
A. T.
,
2000
, “
Sliding Wear Map for the Magnesium Alloy Mg–9Al–0.9 Zn (AZ91)
,”
Wear
,
246
(
1–2
), pp.
106
116
.
17.
Rajkumar
,
K.
, and
Aravindan
,
S.
,
2011
, “
Tribological Studies on Microwave Sintered Copper–Carbon Nanotube Composites
,”
Wear
,
270
(
9–10
), pp.
613
621
.
18.
Zhou
,
M.
,
Qu
,
X.
,
Ren
,
L.
,
Fan
,
L.
,
Zhang
,
Y.
,
Guo
,
Y.
,
Quan
,
G.
,
Tang
,
Q.
,
Liu
,
B.
, and
Sun
,
H.
,
2017
, “
The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy
,”
Materials
,
10
(
12
), pp.
1385
1402
.
19.
An
,
J.
,
Li
,
R. G.
,
Lu
,
Y.
,
Chen
,
C. M.
, and
Xu
,
Y.
,
2008
, “
Dry Sliding Wear Behavior of Magnesium Alloys
,”
Wear
,
265
(
1–2
), pp.
97
104
.
20.
Huang
,
W.
,
Lin
,
Q.
, and
Zhang
,
X.
,
2010
, “
Investigation of Tribological Properties of Magnesium Alloys Under Dry Sliding and Lubrication Condition
,”
Proc. Inst. Mech. Eng.
,
225
(
1
), pp.
35
42
.
21.
Stott
,
F. H.
, and
Wood
,
G. C.
,
1978
, “
The Influence of Oxides on the Friction and Wear of Alloys
,”
Tribol. Int.
,
11
(
4
), pp.
211
218
.
You do not currently have access to this content.