This paper presents a thermal elastohydrodynamic lubrication (EHL) model for analyzing crowned roller lubrication performances under the influence of frictional heating. In this thermal EHL model, the Reynolds equation is solved to obtain the film thickness and pressure results while the energy equation and temperature integration equation are evaluated for the temperature rise in the lubricant and at the surfaces. The discrete convolution fast Fourier transform (DC-FFT) method is utilized to calculate the influence coefficients for both the elastic deformation and the temperature integration equations. The influences of the slide-to-roll ratio (SRR), load, crowning radius, and roller length on the roller lubrication and temperature rise are investigated. The results indicate that the thermal effect becomes significant for the cases with high SRRs or heavy loads. The proposed thermal EHL model is used to study the thermal-tribology behavior of an apex seal–housing interface in a rotary engine, and to assist the design of the apex seal crown geometry. A simplified crown design equation is obtained from the analysis results, validated through comparison with the optimal results calculated using the current crowned-roller thermo-EHL (TEHL) model.

References

References
1.
Cheng
,
H. S.
, and
Sternlicht
,
B.
,
1964
, “
A Numerical Solution for the Pressure, Temperature, and Film Thickness Between Two Infinitely Long, Lubricated Rolling and Sliding Cylinders, Under Heavy Loads
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
695
704
.
2.
Dowson
,
D.
, and
Whitaker
,
A. V.
,
1966
, “
A Numerical Procedure for the Solution of the Elastohydrodynamic Problem of Rolling and Sliding Contacts Lubricated by a Newtonian Fluid
,”
Proc. Inst. Mech. Eng.
,
180
, pp.
119
134
.
3.
Yang
,
P. R.
, and
Wen
,
S. H.
,
1992
, “
The Behavior of Non-Newtonian Thermal EHL Film in Line Contacts at Dynamic Loads
,”
ASME J. Tribol.
,
114
(
1
), pp.
81
85
.
4.
Hsiao
,
H. S.
, and
Hamrock
,
B. J.
,
1994
, “
Non-Newtonian and Thermal Effects on Film Generation and Traction Reduction in EHL Line Contact Conjunctions
,”
ASME J. Tribol.
,
116
(
3
), pp.
559
568
.
5.
Hsiao
,
H. S.
, and
Hamrock
,
B. J.
,
1994
, “
Temperature Distribution and Thermal-Degradation of the Lubricant in EHL Line Contact Conjunctions
,”
ASME J. Tribol.
,
116
(
4
), pp.
794
803
.
6.
Yang
,
P.
,
Wang
,
J.
, and
Kaneta
,
M.
,
2006
, “
Thermal and Non-Newtonian Numerical Analyses for Starved EHL Line Contacts
,”
ASME J. Tribol.
,
128
(
2
), pp.
282
290
.
7.
Almqvist
,
T.
, and
Larsson
,
R.
,
2002
, “
The Navier-Stokes Approach for Thermal EHL Line Contact Solutions
,”
Tribol. Int.
,
35
(
3
), pp.
163
170
.
8.
Almqvist
,
T.
, and
Larsson
,
R.
,
2008
, “
Thermal Transient Rough EHL Line Contact Simulations by Aid of Computational Fluid Dynamics
,”
Tribol. Int.
,
41
(
8
), pp.
683
693
.
9.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2008
, “
Traction in EHL Line Contacts Using Free-Volume Pressure-Viscosity Relationship With Thermal and Shear-Thinning Effects
,”
ASME J. Tribol.
,
131
(
1
), p.
011503
.
10.
Zhang
,
B. B.
,
Wang
,
J.
,
Omasta
,
M.
, and
Kaneta
,
M.
,
2015
, “
Effect of Fluid Rheology on the Thermal EHL Under ZEV in Line Contact
,”
Tribol. Int.
,
87
, pp.
40
49
.
11.
Ochoa
,
E. D.
,
Otero
,
J. E.
,
Lopez
,
A. S.
,
Tanarro
,
E. C.
, and
Lopez
,
B. D.
,
2018
, “
Film Thickness Formula for Thermal EHL Line Contact Considering a New Reynolds-Carreau Equation
,”
Tribol. Lett.
,
31
, p.
66
.
12.
Bruggemann
,
H.
, and
Kollmann
,
F. G.
,
1982
, “
A Numerical Solution of the Thermal Elastohydrodynamic Lubrication in an Elliptical Contact
,”
ASME J. Lubr. Technol.
,
104
(3), pp.
392
400
.
13.
Zhu
,
D.
, and
Wen
,
S. Z.
,
1984
, “
A Full Numerical-Solution for the Thermoelastohydrodynamic Problem in Elliptical Contacts
,”
ASME J. Tribol.
,
106
(
2
), pp.
246
254
.
14.
Ma
,
M. T.
,
1997
, “
An Expedient Approach to the Non-Newtonian Thermal EHL in Heavily Loaded Point Contacts
,”
Wear
,
206
(
1–2
), pp.
100
112
.
15.
Liu
,
X. L.
, and
Yang
,
P. R.
,
2009
, “
Effects of Solid Body Temperature on the Non-Newtonian Thermal EHL Behavior in Point Contacts
,”
Advanced Tribology
, Springer, Berlin, pp.
169
170
.
16.
Liu
,
X. L.
,
Jiang
,
M.
,
Yang
,
P. R.
, and
Kaneta
,
M.
,
2005
, “
Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model
,”
ASME J. Tribol.
,
127
(
1
), pp.
70
81
.
17.
Kaneta
,
M.
, and
Yang
,
P. R.
,
2003
, “
Effects of Thermal Conductivity of Contacting Surfaces on Point EHL Contacts
,”
ASME J. Tribol.
,
125
(
4
), pp.
731
738
.
18.
Zhang
,
J. J.
,
Yang
,
P. R.
,
Wang
,
J.
, and
Guo
,
F.
,
2015
, “
The Effect of an Oscillatory Entrainment Velocity on the Film Thickness in Thermal EHL Point Contact
,”
Tribol. Int.
,
90
, pp.
519
532
.
19.
Kaneta
,
M.
,
Cui
,
J. L.
,
Yang
,
P. R.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2016
, “
Influence of Thermal Conductivity of Contact Bodies on Perturbed Film Caused by a Ridge and Groove in Point EHL Contacts
,”
Tribol. Int.
,
100
, pp.
84
98
.
20.
Kaneta
,
M.
, and
Yang
,
P. R.
,
2003
, “
Formation Mechanism of Steady Multi-Dimples in Thermal EHL Point Contacts
,”
ASME J. Tribol.
,
125
(
2
), pp.
241
251
.
21.
Yang
,
P. R.
,
Cui
,
J. L.
,
Jin
,
Z. M.
, and
Dowson
,
D.
,
2008
, “
Influence of Two-Sided Surface Waviness on the EHL Behavior of Rolling/Sliding Point Contacts Under Thermal and Non-Newtonian Conditions
,”
ASME J. Tribol.
,
130
(
4
), p.
041502
.
22.
Zhang
,
B. B.
,
Wang
,
J.
,
Omasta
,
M.
, and
Kaneta
,
M.
,
2016
, “
Variation of Surface Dimple in Point Contact Thermal EHL Under ZEV Condition
,”
Tribol. Int.
,
94
, pp.
383
394
.
23.
Kuroda
,
S.
, and
Arai
,
K.
,
1985
, “
Elastohydrodynamic Lubrication Between Two Rollers
,”
JSME
,
28
(
241
), pp.
1367
1372
.
24.
Mostofi
,
A.
, and
Gohar
,
R.
,
1983
, “
Elastohydrodynamic Lubrication of Finite Line Contacts
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
598
604
.
25.
Park
,
T. J.
, and
Kim
,
K. W.
,
1998
, “
Elastohydrodynamic Lubrication of a Finite Line Contact
,”
Wear
,
223
(
1–2
), pp.
102
109
.
26.
Zhu
,
D.
,
Wang
,
J. X.
,
Ren
,
N.
, and
Wang
,
Q. J.
,
2012
, “
Mixed Elastohydrodynamic Lubrication in Finite Roller Contacts Involving Realistic Geometry and Surface Roughness
,”
ASME J. Tribol.
,
134
(
1
), p.
011504
.
27.
He
,
T.
,
Wang
,
J. X.
,
Wang
,
Z. J.
, and
Zhu
,
D.
,
2015
, “
Simulation of Plasto-Elastohydrodynamic Lubrication in Line Contacts of Infinite and Finite Length
,”
ASME J. Tribol.
,
137
(
4
), p.
041505
.
28.
Park
,
T. J.
, and
Kim
,
K. W.
,
1998
, “
A Numerical Analysis of the Elastohydrodynamic Lubrication of Elliptical Contacts
,”
Wear
,
136
, pp.
299
312
.
29.
Najjari
,
M.
, and
Guilbault
,
R.
,
2014
, “
Edge Contact Effect on Thermal Elastohydrodynamic Lubrication of Finite Contact Lines
,”
Tribol. Int.
,
71
, pp.
50
61
.
30.
Wang
,
X. P.
,
Liu
,
Y. C.
, and
Zhu
,
D.
,
2017
, “
Numerical Solution of Mixed Thermal Elastohydrodynamic Lubrication in Point Contacts With Three-Dimensional Surface Roughness
,”
ASME J. Tribol.
,
139
(
1
), p.
011501
.
31.
Kim
,
H. J.
,
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
2001
, “
Thermal Elastohydrodynamic Analysis of Circular Contacts—Part 1: Newtonian Model
,”
Proc. Inst. Mech. Eng.
,
215
(
3
), pp.
339
352
.
32.
He
,
T.
,
Zhu
,
D.
,
Wang
,
J. X.
, and
Wang
,
Q. J.
,
2017
, “
Experimental and Numerical Investigations of the Stribeck Curves for Lubricated Counterformal Contacts
,”
ASME J. Tribol.
,
139
(
2
), p.
021505
.
33.
Nikas
,
G. K.
,
2017
, “
Miscalculation of Film Thickness, Friction and Contact Efficiency by Ignoring Tangential Tractions in Elastohydrodynamic Contacts
,”
Tribol. Int.
,
110
(
6
), pp.
252
263
.
34.
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2008
, “
A Numerical Model for the Point Contact of Dissimilar Materials Considering Tangential Tractions
,”
Mech. Mater.
,
40
(
11
), pp.
936
948
.
35.
Liu
,
X. L.
,
Ma
,
M.
,
Yang
,
P.
, and
Guo
,
F.
,
2018
, “
A New Method for Eyring Shear-Thinning Models in Elliptical Contacts Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
140
(
5
), p.
051503
.
36.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
37.
Liu
,
S. B.
, and
Wang
,
Q.
,
2002
, “
Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
(
1
), pp.
36
45
.
38.
Roelands
,
C. J. A.
,
Vlutger
,
J. C.
, and
Watermann
,
H. I.
,
1963
, “
The Viscosity Temperature Pressure Relationship of Lubricating Oils and Its Correlation With Chemical Constitution
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
601
607
.
39.
Yang
,
P. R.
, and
Wen
,
S. Z.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamio Lubrication
,”
ASME J. Tribol.
,
112
, pp.
631
636
.
40.
Liu
,
Y. C.
,
Wang
,
H.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2002
, “
Methods Comparison in Computation of Temperature Rise on Frictional Interfaces
,”
Tribol. Int.
,
35
(
8
), pp.
549
560
.
41.
Liu
,
Y. C.
,
Wang
,
Q. J.
,
Zhu
,
D.
, and
Shi
,
F.
,
2008
, “
A Generalized Thermal EHL Model for Point Contact Problems
,”
ASME
Paper No. IJTC2008-71120.
42.
Bos
,
J.
, and
Moes
,
H.
,
1995
, “
Frictional Heating of Tribological Contacts
,”
ASME J. Tribol.
,
117
(
1
), pp.
171
177
.
43.
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2008
, “
Thermomechanical Analysis of Elastoplastic Bodies in a Sliding Spherical Contact and the Effects of Sliding Speed, Heat Partition, and Thermal Softening
,”
ASME J. Tribol.
,
130
(
4
), p.
041402
.
44.
Ai
,
X. L.
,
1993
, “
Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts With Rough Surfaces by Using Semi-System and Multigrid Methods
,” Northwestern University, Evanston, IL.
45.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
1999
, “
The Study of Transition From Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,”
STLE/ASME HS Cheng Tribology Surveillance
, pp.
150
156
.
46.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts—Part I: Theoretical Formulation
,”
ASME J. Lubr. Technol.
,
98
(2), pp.
223
228
.
47.
Brewe
,
D. E.
, and
Hamrock
,
B. J.
,
1977
, “
Simplified Solution for Elliptical-Contact Deformation Between Two Elastic Solids
,”
ASME J. Lubr. Technol.
,
99
(
4
), pp.
485
487
.
You do not currently have access to this content.