To quantify the friction mechanism of the interface of the brake disk-pad pair, an analytical model of coefficient of friction (COF) is established from the perspective of contact mechanics. The model takes into account the surface topography of the disk, mechanical properties of brake pair, and the ingredients of the brake pad. As the reinforcing fillers, the effect of particle size and amount on the COF are analyzed, and the simulation results are consistent with the experimental data. The model and results presented here offer some insight into real brake pair design.

References

References
1.
Hinrichs
,
R.
,
Soares
,
M. R. F.
,
Lamb
,
R. G.
,
Soares
,
M. R. F.
, and
Vasconcellos
,
M. A. Z.
,
2011
, “
Phase Characterization of Debris Generated in Brake Pad Coefficient of Friction Tests
,”
Wear
,
270
(
7–8
), pp.
515
519
.
2.
Laguna-Camacho
,
J. R.
,
Juárez-Morales
,
G.
,
Calderón-Ramón
,
C.
,
Velázquez-Martínez
,
V.
,
Hernández-Romero
,
I.
,
Méndez-Méndez
,
J. V.
, and
Vite-Torres
,
M.
,
2015
, “
A Study of the Wear Mechanisms of Disk and Shoe Brake Pads
,”
Eng. Fail. Anal.
,
56
, pp.
348
359
.
3.
Menapace
,
C.
,
Leonardi
,
M.
,
Matějka
,
V.
,
Gialanella
,
S.
, and
Straffelini
,
G.
, 2018, “
Dry Sliding Behavior and Friction Layer Formation in Copper-Free Barite Containing Friction Materials
,”
Wear
,
398–399
, pp. 191–200.
4.
Heussaff
,
A.
,
Dubar
,
L.
,
Tison
,
T.
,
Watremez
,
M.
, and
Nunes
,
R. F.
,
2012
, “
A Methodology for the Modelling of the Variability of Brake Lining Surfaces
,”
Wear
,
289
, pp.
145
159
.
5.
Ostermeyer
,
G. P.
, and
Müller
,
M.
,
2006
, “
Dynamic Interaction of Friction and Surface Topography in Brake Systems
,”
Tribol. Int.
,
39
(
5
), pp.
370
380
.
6.
Barros
,
L. Y.
,
Neis
,
P. D.
,
Ferreira
,
N. F.
,
Pavlak
,
R. P.
,
Masotti
,
D.
,
Matozo
,
L. T.
,
Sukumaran
,
J.
,
Baets
,
P. D.
, and
Andó
,
M.
,
2016
, “
Morphological Analysis of Pad-Disc System During Braking Operations
,”
Wear
,
352–353
, pp.
112
121
.
7.
Singh
,
T.
,
Patnaik
,
A.
,
Chauhan
,
R.
, and
Rishiraj
,
A.
,
2017
, “
Assessment of Braking Performance of Lapinus-wollastonite Fiber Reinforced Friction Composite Materials
,”
J. King. S. Univ. Eng. Sci.
,
29
, pp.
183
190
.
8.
Cho
,
K. H.
,
Jang
,
H.
,
Hong
,
Y. S.
,
Kim
,
S. J.
,
Basch
,
R. H.
, and
Fash
,
J. W.
,
2008
, “
The Size Effect of Zircon Particles on the Friction Characteristics of Brake Lining Materials
,”
Wear
,
264
(
3–4
), pp.
291
297
.
9.
Kim
,
S. S.
,
Hwang
,
H. J.
,
Shin
,
M. W.
, and
Jang
,
H.
,
2011
, “
Friction and Vibration of Automotive Brake Pads Containing Different Abrasive Particles
,”
Wear
,
271
(
7–8
), pp.
1194
1202
.
10.
Ma
,
Y. N.
,
Martynková
,
G. S.
,
Valášková
,
M.
,
Matějka
,
V.
, and
Lu
,
Y. F.
,
2008
, “
Effects of ZrSiO4 in Non-Metallic Brake Friction Materials on Friction Performance
,”
Tribol. Int.
,
41
(
3
), pp.
166
174
.
11.
Gbadeyan
,
O. J.
,
Kanny
,
K.
, and
Pandurangan
,
M. T.
,
2018
, “
Tribological, Mechanical, and Microstructural of Multiwalled Carbon Nanotubes/Short Carbon Fiber Epoxy Composites
,”
ASME J. Tribol.
,
140
(
2
), p.
022002
.
12.
Alemani
,
M.
,
Gialanella
,
S.
,
Straffelini
,
G.
,
Ciudin
,
R.
,
Olofsson
,
U.
,
Perricone
,
G.
, and
Metinoz
,
I.
,
2017
, “
Dry Sliding of a Low Steel Friction Material Against Cast Iron at Different Loads: Characterization of the Friction Layer and Wear Debris
,”
Wear
,
376–377
, pp.
1450
1459
.
13.
Kchaou
,
M.
,
Sellami
,
A.
,
Elleuch
,
R.
, and
Singh
,
H.
,
2013
, “
Friction Characteristics of a Brake Friction Material Under Different Braking Conditions
,”
Mater. Des.
,
52
, pp.
533
540
.
14.
Mirzababaei
,
S.
, and
Filip
,
P.
,
2017
, “
Impact of Humidity on Wear of Automotive Friction Materials
,”
Wear
,
376–377
, pp.
717
726
.
15.
Lee
,
W. K.
, and
Jang
,
H.
,
2013
, “
Moisture Effect Velocity Dependence Sliding Friction Brake Friction Materials
,”
Wear
,
306
, pp.
17
21
.
16.
Gyimah
,
G. K.
,
Huang
,
P.
, and
Chen
,
D.
,
2014
, “
Dry Sliding Wear Studies of Copper-Based Powder Metallurgy Brake Materials
,”
ASME J. Tribol.
,
136
, p.
041601
.
17.
Thornton
,
R.
,
Slatter
,
T.
,
Jones
,
A. H.
, and
Lewis
,
R.
,
2011
, “
The Effects of Cryogenic Processing on the Wear Resistance of Grey Cast Iron Brake Discs
,”
Wear
,
271
(
9–10
), pp.
2386
2395
.
18.
Gao
,
H. M.
,
2007
,
Mineral Composite Friction Material
,
Chemical Industry Press
,
Beijing, China
, p.
222
.
19.
Yoon
,
S. W.
,
Shin
,
M. W.
,
Lee
,
W. G.
, and
Jang
,
H.
,
2012
, “
Effect of Surface Contact Conditions on the Stick-Slip Behavior of Brake Friction Material
,”
Wear
,
294–295
, pp.
305
312
.
20.
Archard
,
J. F.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London A
,
243
(
1233
), pp.
190
205
.
21.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, p.
111
.
22.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London Ser. A
,
295
(
1442
), pp.
300
319
.
23.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
24.
Polycarpou
,
A.
, and
Etsion
,
I.
,
1999
, “
Analytical Approximations in Modeling Contacting Rough Surfaces
,”
ASME J. Tribol.
,
121
(
2
), pp.
234
239
.
25.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
26.
Zhao
,
Y.
,
Maletta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
27.
Waddad
,
Y.
,
Magnier
,
V.
,
Dufrénoy
,
P.
, and
Saxcé
,
G. D.
,
2016
, “
A Multiscale Method for Frictionless Contact Mechanics of Rough Surfaces
,”
Tribol. Int.
,
96
, pp.
109
121
.
28.
Huang
,
P.
,
Guo
,
D.
, and
Wen
,
S. Z.
,
2013
,
Interface Mechanics
,
Tsinghua University Press
,
Beijing, China
, p.
40
.
29.
Popov
,
V. L.
,
2010
,
Contact Mechanics and Friction Physical Principles and Applications
,
Springer
, Berlin, p.
17
.
30.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1954
,
The Friction and Lubrication of Solids
,
Oxford University Press
,
Oxford, UK
, p.
120
.
31.
Moore
,
D. D.
,
1975
,
Principles and Application of Tribology
,
Pergamon Press
,
Oxford, UK
, p.
30
.
32.
Wei
,
J. B.
,
2016
, “
Studying Micro-Structure Constitutive Theory and Damage Analysis of Particulate-Reinforced Composites
,” Ph.D. dissertation, Yanshan University, Qinhuangdao, Hebei, China.
33.
Wang
,
D.
,
2015
, “
Study on the Numerical Simulation of Particle Reinforced Titanium Matrix Composite's Mechanical Properties
,” Ph.D. dissertation, Beijing Institute of Technology, Beijing, China.
34.
Yang
,
H.
,
2012
, “
Micromechanics of Particulate Reinforced Composites
,”
Ph.D. dissertation
, Nanjing University of Aeronautics and Astronautics, Nanjing, China.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19960048664.pdf
35.
Sun
,
C.
,
2012
, “
An Investigation of the Microstructures and Mechanical Properties of SiC Particles Reinforced Aluminum Matrix Composites
,” Ph.D. dissertation, Central South University, Nanjing, Jiangsu, China.
36.
Zhu
,
W. T.
,
Fu
,
Y. W.
,
Li
,
H. J.
,
Fei
,
J.
, and
Zhang
,
Z. M.
,
2012
, “
Effect of CaSiO4 on Resin-Based Friction Materials
,”
Lubr. Eng.
,
37–11
, pp.
45
50
.
37.
Zhang
,
B. Y.
, and
Yao
,
G. X.
,
2013
, “
Effect of ZrSiO4 and Al2O3 on Friction Properties of Brake Material
,”
FRP/CM
,
7
, pp. pp.
32
36
.
38.
Chen
,
H. Y.
,
2003
, “
Study on Friction Properties of Fiber Reinforced Resin-Based Friction Materials
,” Ph.D. dissertation, Shan Dong University, Jinan, China.
You do not currently have access to this content.