A coupled multibody elastic–plastic finite element (FE) model was developed to investigate the effects of surface defects, such as dents on rolling contact fatigue (RCF). The coupled Voronoi FE model was used to determine the contact pressure acting over the surface defect, internal stresses, damage, etc. In order to determine the shape of a dent and material pile up during the over rolling process, a rigid indenter was pressed against an elastic plastic semi-infinite domain. Continuum damage mechanics (CDM) was used to account for material degradation during RCF. Using CDM, spall initiation and propagation in a line contact was modeled and investigated. A parametric study using the model was performed to examine the effects of dent sharpness, pile up ratio, and applied load on the spall formation and fatigue life. The spall patterns were found to be consistent with experimental observations from the open literature. Moreover, the results demonstrated that the dent shape and sharpness had a significant effect on pressure and thus fatigue life. Higher dent sharpness ratios significantly reduced the fatigue life.

References

References
1.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
,
Wiley
,
New York
.
2.
Littmann
,
W. E.
, “
The Mechanism of Contact Fatigue
,” National Aeronautics and Space Administration, Washington, DC, Report No. SP-237.
3.
Littmann
,
W. E.
, and
Widner
,
R. L.
,
1966
, “
Propagation of Contact Fatigue From Surface and Subsurface Origins
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
624
36
.
4.
Nelias
,
D.
, and
Ville
,
F.
,
2000
, “
Detrimental Effects of Debris Dents on Rolling Contact Fatigue
,”
ASME J. Tribol.
,
122
, pp.
55
64
.
5.
Fitzsimmons
,
B.
, and
Clevenger
,
H. D.
,
1977
, “
Contaminated Lubricants and Tapered Roller Bearing Wear
,”
ASLE Trans.
,
20
(
2
), pp.
97
107
.
6.
Perrotto
,
J. A.
,
1979
, “
Effect of Abrasive Contamination on Ball Bearing Performance
,”
ASLE J. Lubr. Eng.
,
35
(12), pp. 698–705.
7.
Loewenthal
,
S. H.
, and
Moyer
,
D. W.
,
1979
, “
Filtration Effects on Ball Bearing Life and Condition in a Contaminated Lubricant
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
171
176
.
8.
Needelman
,
W. M.
,
1980
, “
Filtration for Wear Control
,”
ASME Wear Control Handbook
,
ASME Press
,
New York
, pp.
507
82
.
9.
Loewenthal
,
S. H.
,
Moyer
,
D. W.
, and
Needelman
,
W. M.
,
1982
, “
Effects of Ultra-Clean and Centrifugal Filtration on Rolling-Element Bearing Life
,”
ASME J. Lubr. Technol.
,
104
(
3
), pp.
283
291
.
10.
Ioannides
,
E.
,
Beghini
,
E.
,
Jacobson
,
B.
,
Bergling
,
G.
, and
Wuttkowski
,
J. G.
, 1993, “
Cleanliness and Its Importance to Bearing Performance
,”
STLE Lubr. Eng.
,
49
(9), pp. 657–663.
11.
Webster
,
M. N.
,
Ioannides
,
E.
, and
Saules
,
R. S.
,
1985
, “
The Effects of Topographical Defects on the Contact Stress and Fatigue Life in Rolling Element Bearings
,” 12th Leeds-Lyon Symposium on Tribology, pp. 121–131.
12.
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1988
, “
Debris Damage in Rolling Bearings and Its Effects on Fatigue Life
,”
ASME J. Tribol.
,
110
(
1
), pp.
26
31
.
13.
Lorosch
,
H.-K.
,
1985
, “
Research on Longer Life for Rolling-Element Bearings
,”
Lubr. Eng.
,
41
, pp.
37
43
.
14.
Ai
,
X.
,
2001
, “
Effect of Debris Contamination on the Fatigue Life of Roller Bearings
,”
Proc. Inst. Mech. Eng. Part J
,
215
(
6
), pp.
563
575
.
15.
Ai
,
X.
, and
Nixon
,
H. P.
,
2000
, “
Fatigue Life Reduction of Roller Bearings Due to Debris Denting—Part I: Theoretical Modeling
,”
Tribol. Trans.
,
43
(
2
), pp.
197
204
.
16.
Vieillard
,
C.
,
Kadin
,
Y.
,
Morales-Espejel
,
G. E.
, and
Gabelli
,
A.
,
2016
, “
An Experimental and Theoretical Study of Surface Rolling Contact Fatigue Damage Progression in Hybrid Bearings With Artificial Dents
,”
Wear
,
364
, pp.
211
223
.
17.
Makino
,
T.
,
Neishi
,
Y.
,
Shiozawa
,
D.
,
Kikuchi
,
S.
,
Okada
,
S.
,
Kajiwara
,
K.
, and
Nakai, Y.
,
2016
, “
Effect of Defect Shape on Rolling Contact Fatigue Crack Initiation and Propagation in High Strength Steel
,”
Int. J. Fatigue
,
92
, pp.
507
516
.
18.
Matsunaga
,
H.
,
Komata
,
H.
,
Yamabe
,
J.
,
Fukushima
,
Y.
, and
Matsuoka
,
S.
,
2014
, “
Effect of Size and Depth of Small Defect on the Rolling Contact Fatigue Strength of Bearing Steel JIS-SUJ2
,”
Procedia Mater. Sci.
,
3
, pp.
1663
1668
.
19.
Da Mota
,
V.
,
Moreira
,
P.
, and
Ferreira
,
L. A. A.
,
2008
, “
A Study on the Effects of Dented Surfaces on Rolling Contact Fatigue
,”
Int. J. Fatigue
,
30
, pp.
1997
2008
.
20.
Gao
,
N.
,
Dwyer-Joyce
,
R. S.
, and
Beynon
,
J. H.
,
1999
, “
Effects of Surface Defects on Rolling Contact Fatigue of 60/40 Brass
,”
Wear
,
225
, pp.
983
994
.
21.
Nelias
,
D.
,
Jacq
,
C.
,
Lormand
,
G.
,
Dudragne
,
G.
, and
Vincent
,
A.
,
2005
, “
New Methodology to Evaluate the Rolling Contact Fatigue Performance of Bearing Steels With Surface Dents: Application to 32CrMoV13 (nitrided) and M50 Steels
,”
ASME J. Tribol.
,
127
, pp.
611
622
.
22.
Tallian
,
T. E.
,
1992
,
Failure Atlas for Hertz Contact Machine Elements
,
American Society of Mechanical Engineers
, New York.
23.
Tallian
,
T. E.
,
1976
, “
Prediction of Rolling Contact Fatigue Life in Contaminated Lubricant—Part II: Experimental
,”
ASME J. Lubr. Technol.
,
98
(
3
), pp.
384
392
.
24.
Ueda
,
T.
, and
Mitamura
,
N.
,
2008
, “
Mechanism of Dent Initiated Flaking and Bearing Life Enhancement Technology Under Contaminated Lubrication Condition—Part I: Effect of Tangential Force on Dent Initiated Flaking
,”
Tribol. Int.
,
41
(
11
), pp.
965
974
.
25.
Dommarco
,
R. C.
,
Bastias
,
P. C.
,
Rubin
,
C. A.
, and
Hahn
,
G. T.
,
2006
, “
The Influence of Material Build Up Around Artificial Defects on Rolling Contact Fatigue Life and Failure Mechanism
,”
Wear
,
260
(
11–12
), pp.
1317
1323
.
26.
Ville
,
F.
, and
Nelias
,
D.
,
1999
, “
An Experimental Study on the Concentration and Shape of Dents Caused by Spherical Metallic Particles in EHL Contacts
,”
Tribol. Trans.
,
42
(
1
), pp.
231
240
.
27.
Coulon
,
S.
,
Jubault
,
I.
,
Lubrecht
,
A. A.
,
Ville
,
F.
, and
Vergne
,
P.
,
2004
, “
Pressure Profiles Measured Within Lubricated Contacts in Presence of Dented Surfaces—Comparison With Numerical Models
,”
Tribol. Int.
,
37
(
2
), pp.
111
117
.
28.
Kang
,
Y. S.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. R.
,
2004
, “
A Finite Element Model for Spherical Debris Denting in Heavily Loaded Contacts
,”
ASME J. Tribol.
,
126
(
1
), pp.
71
80
.
29.
Nikas
,
G. K.
,
2006
, “
A Mechanistic Model of Spherical Particle Entrapment in Elliptical Contacts
,”
Proc. Inst. Mech. Eng. Part J
,
220
(
6
), pp.
507
522
.
30.
Ai
,
X.
, and
Lee
,
S. C.
,
1996
, “
Effect of Slide-to-Roll Ratio on Interior Stresses Around a Dent in EHL Contacts
,”
Tribol. Trans.
,
39
(
4
), pp.
881
889
.
31.
Ioannides
,
E.
, and
Harris
,
T. A.
,
1985
, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
,
107
(
3
), pp.
367
377
.
32.
Ko
,
C. N.
, and
loannides, E.
,
1989
, “
Debris Denting—The Associated Residual Stresses and Their Effect on the Fatigue Life of Rolling Bearing: An FEM Analysis
,”
Tribol. Ser.
,
14
, pp.
199
207
.
33.
Hamer
,
J. C.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1989
, “
Particle Deformation and Counterface Damage When Relatively Soft Particles Are Squashed Between Hard Anvils
,”
Tribol. Trans.
,
32
(
3
), pp.
281
288
.
34.
Lubrecht
,
A. A.
,
Venner
,
C. H.
,
Lane
,
S.
,
Jacobson
,
B. O.
, and
Ioannides
,
E.
, 1990, “
Surface Damage–Comparison of Theoretical and Experimental Lives of Rolling Bearings
,” Japan Institute of Tribology Conference, Nagoya, Japan, pp. 185–190.
35.
Coulon
,
S.
,
Ville
,
F.
, and
Lubrecht
,
A. A.
,
2002
, “
An Abacus for Predicting the Rolling Contact Fatigue Life Reduction Due to Debris Dents
,”
Tribol. Ser.
,
40
, pp.
283
293
.
36.
Biboulet
,
N.
,
Lubrecht
,
A. A.
, and
Houpert
,
L.
,
2008
, “
Contact Pressure in Indented Elastohydrodynamic Lubrication Contacts
,”
Proc. Inst. Mech. Eng. Part J
,
222
(
3
), pp.
415
421
.
37.
Biboulet
,
N.
,
Houpert
,
L.
, and
Lubrecht
,
A. A.
,
2013
, “
Contact Stress and Rolling Contact Fatigue of Indented Contacts—Part I: Numerical Analysis
,”
Proc. Inst. Mech. Eng. Part J
,
227
(
4
), pp.
310
318
.
38.
Lubrecht
,
A. A.
,
Dwyer-Joyce
,
R. S.
, and
Ioannides
,
E.
,
1992
, “
Paper IV (III) Analysis of the Influence of Indentations on Contact Life
,”
Tribol. Ser.
,
21
, pp.
173
181
.
39.
Coulon
,
S.
,
2001
,
Prediction of the Lifetime of Punctual Contacts Lubricated in the Presence of Indentations
,
INSA, Villeurbanne, France
.
40.
Ai
,
X.
, and
Cheng
,
H. S.
,
1994
, “
The Influence of Moving Dent on Point EHL Contacts
,”
Tribol. Trans.
,
37
(
2
), pp.
323
335
.
41.
Howell
,
M. B.
,
Rubin
,
C. A.
, and
Hahn
,
G. T.
,
2004
, “
The Effect of Dent Size on the Pressure Distribution and Failure Location in Dry Point Frictionless Rolling Contacts
,”
ASME J. Tribol.
,
126
(
3
), pp.
413
421
.
42.
Lemaitre
,
J.
,
1992
,
A Course on Damage Mechanics
, Springer, Berlin, p. 42.
43.
Chaboche
,
J.-L.
,
1988
, “
Continuum Damage Mechanics: Part II—Damage Growth, Crack Initiation, and Crack Growth
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
65
72
.
44.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
,
2010
, “
A Voronoi FE Fatigue Damage Model for Life Scatter in Rolling Contacts
,”
ASME J. Tribol.
,
132
, p.
21404
.
45.
Xiao
,
Y.-C.
,
Li
,
S.
, and
Gao
,
Z.
,
1998
, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
,
20
(
7
), pp.
503
508
.
46.
Memon
,
I. R.
,
Zhang
,
X.
, and
Cui
,
D.
, 2002, “
Fatigue Life Prediction of 3-D Problems by Damage Mechanics With Two-Block Loading
,”
Int. J. Fatigue
,
24
(1), pp. 29–37.
47.
Xu
,
G.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. R.
,
1998
, “
Dent Initiated Spall Formation in EHL Rolling/Sliding Contact
,”
ASME J. Tribol.
,
120
(
3
), pp.
453
462
.
48.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Spall Initiation and Propagation Due to Debris Denting
,”
Wear
,
201
(
1–2
), pp.
106
116
.
49.
Xu
,
G.
,
Sadeghi
,
F.
, and
Cogdell
,
J. D.
,
1997
, “
Debris Denting Effects on Elastohydrodynamic Lubricated Contacts
,”
ASME J. Tribol.
,
119
(
3
), pp.
579
587
.
50.
Miller
,
K. J.
,
1999
, “
A Historical Perspective of the Important Parameters of Metal Fatigue; and Problems for the Next Century
,”
Seventh Interantional Fatigue Congress
, Beijing, China, June 8–12, pp.
15
39
.
51.
Warhadpande
,
A.
, and
Sadeghi
,
F.
,
2010
, “
Effects of Surface Defects on Rolling Contact Fatigue of Heavily Loaded Lubricated Contacts
,”
Proc. Inst. Mech. Eng. Part J
,
224
(
10
), pp.
1061
1077
.
52.
Bower
,
A. F.
, and
Johnson
,
K. L.
,
1989
, “
The Influence of Strain Hardening on Cumulative Plastic Deformation in Rolling and Sliding Line Contact
,”
J. Mech. Phys. Solids
,
37
(
4
), pp.
471
493
.
53.
Johnson
,
K. L.
,
1989
, “
The Mechanics of Plastic Deformation of Surface and Subsurface Layers in Rolling and Sliding Contact
,”
Key Eng. Mater.
,
33
, pp.
17
34
.
54.
Mura
,
T.
, and
Nakasone
,
Y.
,
1990
, “
A Theory of Fatigue Crack Initiation in Solids
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
1
6
.
55.
Cheng
,
W.
,
Cheng
,
H. S.
,
Mura
,
T.
, and
Keer
,
L. M.
,
1994
, “
Micromechanics Modeling of Crack Initiation Under Contact Fatigue
,”
ASME J. Tribol.
,
116
(
1
), pp.
2
8
.
56.
Mihailidis
,
A.
,
Retzepis
,
J.
,
Salpistis
,
C.
, and
Panajiotidis
,
K.
,
1999
, “
Calculation of Friction Coefficient and Temperature Field of Line Contacts Lubricated With a Non-Newtonian Fluid
,”
Wear
,
232
(
2
), pp.
213
220
.
57.
Mihallidis
,
A.
,
Salpistis
,
C.
,
Drivakos
,
N.
, and
Panagiotidis
,
K.
,
2003
, “
Friction Behavior of FVA Reference Mineral Oils Obtained by a Newly Designed Two-Disk Test Rig
,”
International Conference Power Transmission
, Varna, Bulgaria, Sept. 11–12, pp. 32–37.
58.
Okabe
,
A.
, and
Boots
,
B.
, 1992,
Spatial Tessellation: Concepts and Applications of Voronoi Diagrams
, Wiley, New York.
59.
Mucklich
,
F.
,
Ohser
,
J.
, and
Schneider
,
G.
,
1997
, “
The Characterization of Homogeneous Polyhedral Microstructures Applying the Spatial Poisson-Voronoi Tesselation Compared to the Standard DIN 50601
,”
Z. Fur. Met.
,
88
, pp.
27
32
.
60.
Slack
,
T.
, and
Sadeghi
,
F.
,
2011
, “
Cohesive Zone Modeling of Intergranular Fatigue Damage in Rolling Contacts
,”
Tribol. Int.
,
44
(
7–8
), pp.
797
804
.
61.
Warhadpande
,
A.
,
Jalalahmadi
,
B.
,
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
A New Finite Element Fatigue Modeling Approach for Life Scatter in Tensile Steel Specimens
,”
Int. J. Fatigue
,
32
(
4
), pp.
685
697
.
62.
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2013
, “
Numerical Modeling of Sub-Surface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
59
, pp.
210
221
.
63.
Ahmadi
,
A.
,
Mirzaeifar
,
R.
,
Moghaddam
,
N. S.
,
Turabi
,
A. S.
,
Karaca
,
H. E.
, and
Elahinia
,
M.
,
2016
, “
Effect of Manufacturing Parameters on Mechanical Properties of 316 L Stainless Steel Parts Fabricated by Selective Laser Melting: A Computational Framework
,”
Mater. Des.
,
112
, pp.
328
338
.
64.
Ahmadi
,
A.
,
Moghaddam
,
N. S.
,
Elahinia
,
M.
,
Karaca
,
H. E.
, and
Mirzaeifar
,
R.
,
2016
, “
Finite Element Modeling of Selective Laser Melting 316l Stainless Steel Parts for Evaluating the Mechanical Properties
,”
ASME
Paper No. MSEC2016-8594.
65.
Ahmadi
,
A.
,
2016
, “
A Micromechanical-Based Computational Framework for Modeling the Mechanical Properties of the Metallic Parts Fabricated by Selective Laser Melting
,”
Ph.D. thesis
, The University of Toledo, Toledo, OH.https://pdfs.semanticscholar.org/8bbc/d5e4a4e8d6287cef8c76a1890855ea5caefe.pdf
66.
Weinzapfel
,
N.
,
Sadeghi
,
F.
, and
Bakolas
,
V.
,
2010
, “
An Approach for Modeling Material Grain Structure in Investigations of Hertzian Subsurface Stresses and Rolling Contact Fatigue
,”
ASME J. Tribol.
,
132
, p.
41404
.
67.
Raje
,
N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
,
2008
, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
130
, p.
42201
.
68.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Liebel
,
A.
, and
Weber
,
J.
,
2013
, “
An Improved Approach for 3D Rolling Contact Fatigue Simulations With Microstructure Topology
,”
Tribol. Trans.
,
56
(
3
), pp.
385
399
.
69.
Ghosh
,
A.
,
Leonard
,
B.
, and
Sadeghi
,
F.
,
2013
, “
A Stress Based Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line Contact in Partial Slip
,”
Wear
,
307
(
1–2
), pp.
87
99
.
70.
Warhadpande
,
A.
,
Sadeghi
,
F.
,
Kotzalas
,
M. N.
, and
Doll
,
G.
,
2012
, “
Effects of Plasticity on Subsurface Initiated Spalling in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
36
(
1
), pp.
80
95
.
71.
Walvekar
,
A. A.
, and
Sadeghi
,
F.
,
2017
, “
Rolling Contact Fatigue of Case Carburized Steels
,”
Int. J. Fatigue
,
95
, pp.
264
81
.
72.
Bomidi
,
J. A. R.
, and
Sadeghi
,
F.
,
2013
, “
Three-Dimensional Finite Element Elastic–Plastic Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
136
, p.
11402
.
73.
Schlicht
,
H.
,
Schreiber
,
E.
, and
Zwirlein
,
O.
,
1986
, “
Fatigue and Failure Mechanism of Bearings
,”
Fatigue Eng. Mater. Struct.
,
1
, pp.
85
90
.
74.
Harris
,
T. A.
, and
Yu
,
W. K.
,
1999
, “
Lundberg-Palmgren Fatigue Theory: Considerations of Failure Stress and Stressed Volume
,”
ASME J. Tribol.
,
121
(
1
), pp.
85
89
.
75.
Shimizu
,
S.
,
Tsuchiya
,
K.
, and
Tosha
,
K.
,
2009
, “
Probabilistic Stress-Life (PSN) Study on Bearing Steel Using Alternating Torsion Life Test
,”
Tribol. Trans.
,
52
(
6
), pp.
807
816
.
You do not currently have access to this content.