A drawback of polymer materials is their low thermal conductivity which affects the operating temperature of polymer gears. The mechanical properties of a polymer gear are critically dependent on the maximum operating temperature. In order to improve thermal behavior of polymer gears, a hybrid polymer gear concept is suggested which consists of a polymer gear tooth with a metallic insert to promote heat evacuation from the meshing surface. The material selection based on finite element method (FEM) simulations showed that an aluminum insert performed better than copper and steel for a hybrid polymer gear. The results show that an aluminum insert increases the mass by 9% in comparison with a standard polymer gear but it decreases the maximum operating temperature by 28%. Insert geometries of different complexity were studied and their influence on operating temperature assessed.

References

References
1.
Terashima
,
K.
,
Tsukamoto
,
N.
, and
Nishida
,
N.
,
1986
, “
Development of Plastic Gear for Power Transmission (Economical Methods for Increasing Load-Carrying Capacity)
,”
Bull. JSME
,
19
(
247
), pp. 256–259.
2.
Terashima
,
K.
,
Tsukamoto
,
N.
, and
Nishida
,
N.
,
1986
, “
Development of Plastic Gears for Power Transmission (Design on Load-Carrying Capacity)
,”
Bull. JSME
,
29
(
250
), pp. 1326–1329.
3.
Lourenço
,
A. F.
,
2015
, “
Testing of Low-Loss Polymer Gears
,” Master thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.
4.
Hubert
,
T.
,
Bauser
,
M.
,
Hasl
,
C.
,
Tobie
,
T.
, and
Stahl
,
K.
,
2015
, “
Load Carrying Capacity of Cylindrical Plastic Gears
,”
International Conference on High Performance Plastic Gears
, pp.
1183
1190
.
5.
Terashima
,
K.
,
Tsukamoto
,
N.
,
Nishida
,
N.
, and
Shi
,
J.
,
1986
, “
Development of Plastic Gear for Power Transmission: Abnormal Wear on the Tooth Root and Tooth Fracture Near Pitch Point
,”
Bull. JSME
,
29
(
251
), pp.
1598
1604
.
6.
Cheewawuttipong
,
W.
,
Fuoka
,
D.
,
Tanoue
,
S.
,
Uematsu
,
H.
, and
Iemoto
,
Y.
,
2013
, “
Thermal and Mechanical Properties of Polypropylene/Boron Nitride Composites
,”
Energy Procedia
,
34
, pp.
808
817
.
7.
Wirth
,
M. S.
, and
Seidler
,
R. T.
,
2015
, “
Determination of Load Carrying Capacity Characteristic Values for Plastic Gears
,”
International Conference on High Performance Plastic Gears
, pp.
1273
1282
.
8.
Höhn
,
B.-R.
,
Michaelis
,
K.
, and
Vollmer
,
T.
,
1996
, “
Thermal Rating of Gear Drives: Balance Between Power Loss and Heat Dissipation
,” American Gear Manufacturers Association, Alexandria, VA, Technical Paper No. AGMA 96FTM8.
9.
Höhn
,
B.
,
Michaelis
,
K.
, and
Wimmer
,
A.
,
2007
, “
Low Loss Gears
,”
Gear Technology
, Elk Grove Village, IL, pp.
28
35
.
10.
Magalhães
,
L.
,
Martins
,
R.
,
Oliveira
,
I.
, and
Seabra
,
J.
,
2012
, “
Comparison of Tooth Profiles and Oil Formulation Focusing Lower Power Losses
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
6
), pp.
529
540
.
11.
Fernandes
,
C.
,
Martins
,
R.
, and
Seabra
,
J.
,
2014
, “
Torque Loss of Type C40 FZG Gears Lubricated With Wind Turbine Gear Oils
,”
Tribol. Int.
,
70
, pp.
83
93
.
12.
Fernandes
,
C.
,
Marques
,
P.
,
Martins
,
R.
, and
Seabra
,
J.
,
2014
, “
Gearbox Power Loss—Part II: Friction Losses in Gears
,”
Tribol. Int.
,
88
, pp. 309–316.
13.
Fernandes
,
C.
,
Marques
,
P.
,
Martins
,
R.
, and
Seabra
,
J.
,
2015
, “
Gearbox Power Loss—Part III: Application to a Parallel Axis and a Planetary Gearbox
,”
Tribol. Int.
,
88
, pp. 317–326.
14.
Fernandes
,
C. M.
,
Martins
,
R. C.
, and
Seabra
,
J. H.
,
2016
, “
Coefficient of Friction Equation for Gears Based on a Modified Hersey Parameter
,”
Tribol. Int.
,
101
, pp. 204–217.
15.
Pont
,
D.
,
2007
, “
Engineering Polymers for High Performance Filters Engineering Polymers for Nonwoven Applications
,” Wilmington, DE, pp.
1
2
.
16.
Li
,
J.
,
Zhang
,
L.
, and
Zhao
,
Q.
,
2010
, “
Comparison and Analysis on Different Finite Element Models of Gear Interfacial Contact Temperature
,”
International Conference on Computer Modeling and Simulation (ICCMS)
, Sanya, Hainan, Jan. 22–24, pp.
132
136
.
17.
Long
,
H.
,
Lord
,
A. A.
,
Gethin
,
D. T.
, and
Roylance
,
B. J.
,
2003
, “
Operating Temperatures of Oil-Lubricated Medium-Speed Gears: Numerical Models and Experimental Results
,”
Proc. Inst. Mech. Eng., Part G
,
217
(
2
), pp.
87
106
.
18.
Vulkov
,
L.
,
Yalamov
,
P.
,
Wasniewski
,
J.
,
Chmurawa
,
M.
, and
John
,
A.
,
2001
,
FEM in Numerical Analysis of Stress and Displacement Distributions in Planetary Wheel of Cycloidal Gear
(Lecture Notes in Computer Science, Vol. 1988),
Springer
,
Berlin
, pp.
170
175
.
19.
Maier
,
E.
,
Ziegltrum
,
A.
,
Lohner
,
T.
, and
Stahl
,
K.
,
2017
, “
Characterization of TEHL Contacts of Thermoplastic Gears
,”
Eng. Res.
,
81
(
2–3
), pp.
317
324
.
20.
Fernandes
,
C. C. M.
,
Rocha
,
D. D. M.
,
Martins
,
R. C. R.
,
Magalhães
,
L.
, and
Seabra
,
J. H. J.
,
2018
, “
Finite Element Method Model to Predict Bulk and Flash Temperatures on Polymer Gears
,”
Tribol. Int.
,
120
, pp.
255
268
.
21.
David, G.G., ed.,
2002
,
Spacecraft Thermal Control Handbook
(Fundamental Technologies, Vol.
I
), The Aerospace Press/American Institute of Aeronautics and Astronautics, Inc., El Segundo, CA/Reston, VA.
22.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.
23.
DSPE, 2018, “
Thermal Contact Conduction
,” DSPE Your Precision Portal, Eindhoven, The Netherlands, accessed Oct. 4, 2018, http://www.dspe.nl/knowledge-base/thermomechanics/chapter-1---basics/1-2-heat-transfer/thermal-contact-conduction/
24.
Gibbins
,
J.
,
2006
, “
Thermal Contact Resistance of Polymer Interfaces
,” Master's thesis, University of Waterloo, Waterloo, ON.
25.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
,
295
(
1442
), pp.
300
319
.
26.
Cetinkale
,
T. N.
, and
Fishenden
,
M.
,
1951
, “
Thermal Conductance of Metal Surfaces in Contact
,”
International Conference of Heat Transfer
, pp.
271
275
.
27.
Yovanovich
,
M. M.
,
1982
, “
Thermal Contact Correlations. Progress in Aeronautics and Aerodynamics: Spacecraft Radiative Transfer and Temperature Control
,”
Am. Inst. Aeronaut. Astronaut.
,
20
, pp.
102
150
.
28.
Mikic
,
B.
,
1974
, “
Thermal Contact Conductance: Theoretical Considerations
,”
Int. J. Heat Mass Transfer
,
17
(
2
), pp.
205
214
.
29.
Fuller
,
J. J.
, and
Marotta
,
E. E.
,
2001
, “
Thermal Contact Conductance of Metal/Polymer Joints: An Analytical and Experimental Investigation
,”
J. Thermophys. Heat Transfer
,
15
(
2
), pp.
228
238
.
30.
Bergam
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
7th ed.
,
Wiley
,
New York
.
31.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
GMSH: A Three-Dimensional Finite Element Mesh Generator With Built-In Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
32.
ISO,
2000
, “
FZG Test Procedures—Part 1: FZG Test Method a/8,3/90 for Relative Scuffing Load-Carrying Capacity of Oils
,” International Organization for Standardization, Geneva, Switzerland, ISO Standard No. 14635-1, I.
33.
ISO,
2004
, “
FZG Test Procedures—Part 2: FZG Step Load Test A10/16, 6R/120 for Relative Scuffing Load-Carrying Capacity of High EP Oils
,” International Organization for Standardization, Geneva, Switzerland, ISO Standard No. 14635-2, I.
34.
ISO,
2005
, “
FZG Test Procedures—Part 3: FZG Test Method A/2,8/50 for Relative Scuffing Load-Carrying Capacity and Wear Characteristics of Semifluid Gear
,” International Organization for Standardization, Geneva, Switzerland, ISO Standard No. 14635-3, I.
35.
Marks
,
L.
,
Baumeister
,
T.
, and
Avallone
,
E.
,
1978
,
Marks' Standard Handbook for Mechanical Engineers
,
McGraw-Hill
,
New York
.
36.
VDI,
2014
, “VDI 2736: Part 2, 2014, Thermoplastic Gear Wheels - Cylindrical Gears - Calculation of the Load-Carrying Capacity,” VDI Richtlinien, VDI-Verlag GmbH, Dusseldorf, Germany, VDI Standard.
37.
Sridhar
,
M. R.
, and
Yovanovich
,
M. M.
,
1996
, “
Elastoplastic Contact Conductance Model for Isotropic, Conforming Rough Surfaces and Comparison With Experiments
,”
ASME J. Heat Transfer
,
118
(
1
), pp.
3
9
.
You do not currently have access to this content.