Grease plays important roles in reducing frictional loss and providing protection of rubbing surfaces. In this research, we investigated the effects of α-zirconium phosphate nanoparticles as additives in grease on the galling behavior of a pair of steels (4130 against P530). The results showed that the addition of 0.5 wt% of nanoparticles in petroleum jelly could reduce the friction for 10% and the area being galled for 80%. In terms of particle sizes, the 1 μm sized particles have profound influence in galling reduction. This is due to the increased contribution of van der Waals forces in the stacked layers of those particles. Under shear, those particles are exfoliated, resulting in low friction and more surface coverage to protect surfaces from galling.

References

1.
Wilson
,
W. R. D.
,
1997
, “
Tribology in Cold Metal Forming
,”
ASME J Manuf. Sci. Eng.
,
119
(
4B
), pp.
695
698
.
2.
Kawai
,
N.
, and
Dohda
,
K.
,
1987
, “
A New Lubricity Evaluation Method for Metal Forming by a Compression-Twist Type Friction Testing Machine
,”
ASME J. Tribol.
,
109
(
2
), pp.
343
350
.
3.
Radil
,
K. C.
, and
Dellacorte
,
C.
,
2002
, “
The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings
,”
Tribol. Trans.
,
45
(
2
), pp.
199
204
.
4.
Bailey
,
E. I.
, and
Smith
,
J. E.
,
1993
, “
Testing Thread Compounds for Rotary-Shouldered Connections
,”
SPE Drill. Completion
,
8
(
3
), pp.
170
174
.
5.
Bhansali
,
K. J.
, and
Miller
,
A. E.
,
1982
, “
The Role of Stacking Fault Energy on Galling and Wear Behavior
,”
Wear
,
75
(
2
), pp.
241
252
.
6.
Cocks
,
M.
,
1965
, “
The Formation of Wedges of Displaced Metal Between Sliding Metal Surfaces
,”
Wear
,
8
(
2
), pp.
85
92
.
7.
Hummel
,
S. R.
,
2008
, “
Development of a Galling Resistance Test Method With a Uniform Stress Distribution
,”
Tribol. Int.
,
41
(
3
), pp.
175
180
.
8.
Lugt
,
P. M.
,
2016
, “
Modern Advancements in Lubricating Grease Technology
,”
Tribol. Int.
,
97
, pp.
467
477
.
9.
Bauer
,
W. H.
,
Finkelstein
,
A. P.
, and
Wiberley
,
S. E.
,
1960
, “
Flow Properties of Lithium Stearate-Oil Model Greases as Functions of Soap Concentration and Temperature
,”
J. ASLE Trans.
,
3
(
2
), pp.
215
224
.
10.
Lugt
,
P. M.
,
2009
, “
A Review on Grease Lubrication in Rolling Bearings
,”
Tribol. Trans.
,
52
(
4
), pp.
470
480
.
11.
Hong
,
H.
,
Waynick
,
A. J.
, and
Roy
,
W.
,
2008
, “
Nanogrease Based on Carbon Nanotube
,”
NLGI Spokesman
,
72
(
7
), pp.
9
17
.
12.
Spikes
,
H.
,
2015
, “
Friction Modifier Additives
,”
Tribol. Lett.
,
60
(
1
), p.
5
.
13.
Carper
,
H. J.
,
Ertas
,
A.
, and
Cuvalci
,
O.
,
1995
, “
Rating Thread Compounds for Galling Resistance
,”
ASME J. Tribol.
,
117
(
4
), pp.
639
645
.
14.
Scharf
,
T. W.
, and
Prasad
,
S. V.
,
2013
, “
Solid Lubricants: A Review
,”
J. Mater. Sci.
,
48
(
2
), pp.
511
531
.
15.
Bowden
,
F. P.
,
Gregory
,
J. N.
, and
Tabor
,
D.
,
1945
, “
Lubrication of Metal Surfaces by Fatty Acids
,”
Nature
,
156
(
3952
), pp.
97
101
.
16.
Jahanmir
,
S.
,
1985
, “
Chain Length Effects in Boundary Lubrication
,”
Wear
,
102
(
4
), pp.
331
349
.
17.
Ozsvath
,
D. L.
,
2009
, “
Fluoride and Environmental Health: A Review
,”
Rev. Environ. Sci. Biotechnol.
,
8
(
1
), pp.
59
79
.
18.
Needleman
,
H. L.
, and
Bellinger
,
D.
,
1991
, “
The Health Effects of Low Level Exposure to Lead
,”
Annu. Rev. Public Health
,
12
(
1
), pp.
111
140
.
19.
Stern
,
B. R.
,
2010
, “
Essentiality and Toxicity in Copper Health Risk Assessment: Overview, Update and Regulatory Considerations
,”
J. Toxicol. Environ. Health A
,
73
(
2–3
), pp.
114
127
.
20.
Ginzburg
,
B. M.
,
Kireenko
,
O. F.
,
Shepelevskii
,
A. A.
,
Shibaev
,
L. A.
,
Tochilnikov
,
D. G.
, and
Leksovskii
,
A. M.
,
2005
, “
Thermal and Tribological Properties of Fullerene‐Containing Composite Systems—Part 2: Formation of Tribo‐Polymer Films During Boundary Sliding Friction in the Presence of Fullerene C60
,”
J. Macromol. Sci. Part B
,
44
(
1
), pp.
93
115
.
21.
Chen
,
C. S.
,
Chen
,
X. H.
,
Xu
,
L. S.
,
Yang
,
Z.
, and
Li
,
W. H.
,
2005
, “
Modification of Multi-Walled Carbon Nanotubes With Fatty Acid and Their Tribological Properties as Lubricant Additive
,”
Carbon
,
43
(
8
), pp.
1660
1666
.
22.
Joly-Pottuz
,
L.
,
Vacher
,
B.
,
Ohmae
,
N.
,
Martin
,
J. M.
, and
Epicier
,
T.
,
2008
, “
Anti-Wear and Friction Reducing Mechanisms of Carbon Nano-Onions as Lubricant Additives
,”
Tribol. Lett.
,
30
(
1
), pp.
69
80
.
23.
Choudhary
,
S.
,
Mungse
,
H. P.
, and
Khatri
,
O. P.
,
2012
, “
Dispersion of Alkylated Graphene in Organic Solvents and Its Potential for Lubrication Applications
,”
J. Mater. Chem.
,
22
(
39
), pp.
21032
21039
.
24.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces
,”
Carbon
,
54
, pp.
454
459
.
25.
Zhou
,
Y.
,
Dahl
,
J.
,
Carlson
,
R.
, and
Liang
,
H.
,
2015
, “
Effects of Molecular Structures of Carbon-Based Molecules on Bio-Lubrication
,”
Carbon
,
86
, pp.
132
138
.
26.
Bakunin
,
V. N.
,
Suslov
,
A. Y.
,
Kuzmina
,
G. N.
, and
Parenago
,
O. P.
, 2006, “
Recent Achievements in the Synthesis and Application of Inorganic Nanoparticles as Lubricant Components
,”
Lubr. Sci.
,
17
(
2
), pp.
127
145
.
27.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
,
2016
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Int.
,
102
, pp.
88
98
.
28.
Seymour
,
B. T.
,
Wright
,
R. A.
,
Parrott
,
A. C.
,
Gao
,
H.
,
Martini
,
A.
,
Qu
,
J.
,
Dai
,
S.
, and
Zhao
,
B.
,
2017
, “
Poly (Alkyl Methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property
,”
ACS Appl. Mater. Interfaces
,
9
(
29
), pp.
25038
25048
.
29.
Acharya
,
B.
,
Chestnut
,
M.
,
Marek
,
A.
,
Smirnov
,
A. I.
, and
Krim
,
J.
,
2017
, “
A Combined QCM and AFM Study Exploring the Nanoscale Lubrication Mechanism of Silica Nanoparticles in Aqueous Suspension
,”
Tribol. Lett.
,
65
(
3
), p.
115
.
30.
Chinas-Castillo
,
F.
, and
Spikes
,
H. A.
,
2003
, “
Mechanism of Action of Colloidal Solid Dispersions
,”
ASME J. Tribol.
,
125
(
3
), pp.
552
557
.
31.
Tevet
,
O.
,
Von-Huth
,
P.
,
Popovitz-Biro
,
R.
,
Rosentsveig
,
R.
,
Wagner
,
H. D.
, and
Tenne
,
R.
,
2011
, “
Friction Mechanism of Individual Multilayered Nanoparticles
,”
Proc. Natl. Acad. Sci. U. S. A
,
108
(
50
), pp.
19901
19906
.
32.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
,
Kan
,
Y.
,
Clearfield
,
A.
, and
Liang
,
H.
,
2016
, “
Formation of Anti-Wear Tribofilms Via α-ZrP Nanoplatelet as Lubricant Additives
,”
Lubricants
,
4
(
3
), p.
28
.
33.
Dai
,
W.
,
Lee
,
K.
,
Sinyukov
,
A. M.
, and
Liang
,
H.
,
2017
, “
Effects of Vanadium Oxide Nanoparticles on Friction and Wear Reduction
,”
ASME J. Tribol.
,
139
(
6
), p.
061607
.
34.
Hummel
,
S. R.
,
2001
, “
New Test Method and Apparatus for Measuring Galling Resistance
,”
Tribol. Int.
,
34
(
9
), pp.
593
597
.
35.
Harsha
,
A. P.
,
Limaye
,
P. K.
,
Tyagi
,
R.
, and
Gupta
,
A.
,
2016
, “
Effect of Temperature on Galling Behavior of SS 316, 316 L and 416 Under Self-Mated Condition
,”
J. Mater. Eng. Perform.
,
25
(
11
), pp.
4980
4987
.
36.
He
,
X.
,
Xiao
,
H.
,
Choi
,
H.
,
Díaz
,
A.
,
Mosby
,
B.
,
Clearfield
,
A.
, and
Liang
,
H.
,
2014
, “
α-Zirconium Phosphate Nanoplatelets as Lubricant Additives
,”
Colloids Surf. Physicochem. Eng. Asp.
,
452
, pp.
32
38
.
37.
Xiao
,
H.
,
Dai
,
W.
,
Kan
,
Y.
,
Clearfield
,
A.
, and
Liang
,
H.
,
2015
, “
Amine-Intercalated α-Zirconium Phosphates as Lubricant Additives
,”
Appl. Surf. Sci.
,
329
(
Suppl C
), pp.
384
389
.
38.
Troup
,
J. M.
, and
Clearfield
,
A.
,
1977
, “
Mechanism of Ion Exchange in Zirconium Phosphates. 20. Refinement of the Crystal Structure of.Alpha.-Zirconium Phosphate
,”
Inorg. Chem.
,
16
(
12
), pp.
3311
3314
.
39.
Sun
,
L. J.
,
Boo
,
W.
,
Sue
,
H.-J.
, and
Clearfield
,
A.
,
2007
, “
Preparation of α-Zirconium Phosphate Nanoplatelets With Wide Variations in Aspect Ratios
,”
New J. Chem.
,
31
(
1
), pp.
39
43
.
40.
Saller
,
G.
, and
Aigner
,
H.
,
2004
, “
High Nitrogen Alloyed Steels for Nonmagnetic Drill Collars. Standard Steel Grades and Latest Developments
,”
Mater. Manuf. Process.
,
19
(
1
), pp.
41
49
.
41.
Zamani
,
S. M.
,
Hassanzadeh-Tabrizi
,
S. A.
, and
Sharifi
,
H.
,
2016
, “
Failure Analysis of Drill Pipe: A Review
,”
Eng. Fail. Anal.
,
59
, pp.
605
623
.
42.
Zia-Ebrahimi
,
F.
, and
Krauss
,
G.
,
1984
, “
Mechanisms of Tempered Martensite Embrittlement in Medium-Carbon Steels
,”
Acta Metall.
,
32
(
10
), pp.
1767
1778
.
43.
Hamaker
,
H. C.
,
1937
, “
The London—Van Der Waals Attraction Between Spherical Particles
,”
Physica
,
4
(
10
), pp.
1058
1072
.
44.
Bergstr
,
L.
,
1997
, “
Hamaker Constants of Inorganic Materials
,”
Adv. Colloid Interface Sci.
,
70
pp.
125
169
.
45.
Li
,
H.
,
Wang
,
X.
,
Chen
,
Y.
, and
Cheng
,
Z.
,
2014
, “
Temperature-Dependent Isotropic-to-Nematic Transition of Charged Nanoplates
,”
Phys. Rev. E
,
90
(
2
), p.
020504
.
You do not currently have access to this content.