A new wear prediction method of tooth surfaces of involute gears based on a real tooth surface model and a modified fractal method is developed. The real tooth surface model of an involute gear pair is introduced, and microgeometry feature detection of tooth surfaces is achieved by monitoring variations of normal vectors of each discrete data point of the real tooth surface model. To predict wear progression of tooth surfaces of a gear pair, an abrasive wear analysis model and the modified fractal method are used to analyze contact performance and its changes with accumulation of surface wear. The abrasive wear analysis model can analyze wear depths of gear tooth surfaces with sliding distances, local contact pressure, and directions of wear progression based on Archard's model. The modified fractal method is proposed to calculate instantaneous contact stiffness and estimate elastic and plastic deformation regions based on an asperity contact model. Microgeometry features of tooth surface asperities can be described as the basis of an asperity contact model and allow tooth contact analysis of real tooth surface models with their local microgeometry feature changes due to plastic deformations. Feasibility and effectiveness of this wear prediction method were verified by comparing predicted results of gear surface wear progression with gear wear test results.

References

1.
Wang
,
Q. J.
, and
Chung
,
Y. W.
,
2013
,
Encyclopedia of Tribology
,
Springer
,
New York
.
2.
Kubo
,
A.
,
2014
, “
Crush of Wear Debris by Tooth Engagement and Tooth Flank Damage
,”
International Gear Conference 2014
, Lyon, France, Aug. 26–28, pp.
825
835
.
3.
Radzevich
,
S. P.
,
2012
,
Dudley's Handbook of Practical Gear Design and Manufacture
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
4.
Fernandes
,
P. J. L.
, and
McDuling
,
C.
,
1997
, “
Surface Contact Fatigue Failures in Gears
,”
Eng. Failure Anal.
,
4
(
2
), pp.
99
107
.
5.
Oila
,
A.
, and
Bull
,
S. J.
,
2005
, “
Phase Transformations Associated With Micropitting in Rolling/Sliding Contacts
,”
J. Mater. Sci.
,
40
(
18
), pp.
4767
4774
.
6.
McColl
,
I. R.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
(
11–12
), pp.
1114
1127
.
7.
Ding
,
J.
,
McColl
,
I. R.
, and
Leen
,
S. B.
,
2007
, “
The Application of Fretting Wear Modelling to a Spline Coupling
,”
Wear
,
262
(
9–10
), pp.
1205
1216
.
8.
Cruzado
,
A.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2014
, “
Finite Element Modeling of Fretting Wear Scars in the Thin Steel Wires: Application in Crossed Cylinder Arrangements
,”
Wear
,
318
(
1–2
), pp.
98
105
.
9.
Cruzado
,
A.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2012
, “
Finite Element Modeling and Experimental Validation of Fretting Wear Scars in Thin Steel Wires
,”
Wear
,
289
, pp.
26
38
.
10.
Chang
,
L.
,
1995
, “
A Deterministic Model for Line-Contact Partial Elastohydrodynamic Lubrication
,”
Tribol. Int.
,
28
(
2
), pp.
75
84
.
11.
Jiang
,
X. F.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X. L.
, and
Lee
,
S. C.
,
1999
, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
,
121
(
3
), pp.
481
491
.
12.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
13.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
2001
, “
A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3-D Surface Roughness
,”
Tribol. Trans.
,
44
(
3
), pp.
383
390
.
14.
Wang
,
Q. J.
,
Zhu
,
D.
,
Cheng
,
H. S.
,
Yu
,
T. H.
,
Jiang
,
X. F.
, and
Liu
,
S. B.
,
2004
, “
Mixed Lubrication Analyses by a Macro-Micro Approach and a Full-Scale Mixed EHL Model
,”
ASME J. Tribol.
,
126
(
1
), pp.
81
91
.
15.
Deolalikar
,
N.
,
Sadeghi
,
F.
, and
Marble
,
S.
,
2008
, “
Numerical Modeling of Mixed Lubrication and Flash Temperature in EHL Elliptical Contacts
,”
ASME J. Tribol.
,
130
(
1
), p.
011004
.
16.
Zhu
,
D.
, and
Wang
,
Q. J.
,
2013
, “
Effect of Roughness Orientation on the Elastohydrodynamic Lubrication Film Thickness
,”
ASME J. Tribol.
,
135
(
3
), pp.
1
9
.
17.
Moorthy
,
V.
, and
Shaw
,
B. A.
,
2012
, “
Contact Fatigue Performance of Helical Gears With Surface Coatings
,”
Wear
,
276–277
, pp.
130
140
.
18.
Moorthy
,
V.
, and
Shaw
,
B. A.
,
2013
, “
An Observation on the Initiation of Micro-Pitting Damage in As-Ground and Coated Gears During Contact Fatigue
,”
Wear
,
297
(
1–2
), pp.
878
884
.
19.
Al-Tubi
,
I. S.
,
Long
,
H.
,
Zhang
,
J.
, and
Shaw
,
B.
,
2015
, “
Experimental and Analytical Study of Gear Micropitting Initiation and Propagation Under Varying Loading Conditions
,”
Wear
,
328-329
, pp.
8
16
.
20.
Sojoudi
,
H.
, and
Khonsari
,
M. M.
,
2010
, “
On the Behavior of Friction in Lubricated Point Contact With Provision for Surface Roughness
,”
ASME J. Tribol.
,
132
(
1
), p.
012102
.
21.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2012
, “
Film Thickness and Asperity Load Formulas for Line Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness
,”
ASME J. Tribol.
,
134
(
1
), p.
011503
.
22.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2014
, “
Theoretical and Experimental Investigation of Traction Coefficient in Line-Contact EHL of Rough Surfaces
,”
Tribol. Int.
,
70
, pp.
179
189
.
23.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2015
, “
On the Effect of Surface Roughness in Point-Contact EHL: Formulas for Film Thickness and Asperity Load
,”
Tribol. Int.
,
82
, pp.
228
244
.
24.
Zhao
,
Y. W.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
2
), pp.
86
93
.
25.
Ding
,
H.
, and
Kahraman
,
A.
,
2007
, “
Interactions Between Nonlinear Spur Gear Dynamics and Surface Wear
,”
J. Sound Vib.
,
307
(
3–5
), pp.
662
679
.
26.
Park
,
D.
, and
Kahraman
,
A.
,
2009
, “
A Surface Wear Model for Hypoid Gear Pairs
,”
Wear
,
267
(
9–10
), pp.
1595
1604
.
27.
Park
,
D.
,
Kolivand
,
M.
, and
Kahraman
,
A.
,
2012
, “
Prediction of Surface Wear of Hypoid Gears Using a Semi-Analytical Contact Model
,”
Mech. Mach. Theory
,
52
, pp.
180
194
.
28.
Park
,
D.
,
Kolivand
,
M.
, and
Kahraman
,
A.
,
2014
, “
An Approximate Method to Predict Surface Wear of Hypoid Gears Using Surface Interpolation
,”
Mech. Mach. Theory
,
71
, pp.
64
78
.
29.
Akbarzadeh
,
S.
, and
Khonsari
,
M. M.
,
2008
, “
Performance of Spur Gears Considering Surface Roughness and Shear Thinning Lubricant
,”
ASME J. Tribol.
,
130
(
2
), p.
021503
.
30.
Serest
,
A. E.
, and
Akbarzadeh
,
S.
,
2014
, “
Mixed-Elastohydrodynamic Analysis of Helical Gears Using Load-Sharing Concept
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
228
(
3
), pp.
320
331
.
31.
Wang
,
W. Z.
,
Wang
,
S.
,
Shi
,
F.
,
Wang
,
Y. C.
,
Chen
,
H. B.
,
Wang
,
H.
, and
Hu
,
Y. Z.
,
2007
, “
Simulations and Measurements of Sliding Friction Between Rough Surfaces in Point Contacts: From EHL to Boundary Lubrication
,”
ASME J. Tribol.
,
129
(
3
), pp.
495
501
.
32.
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
A Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs
,”
ASME J. Tribol.
,
132
(
1
), p.
011501
.
33.
Li
,
S.
,
Kahraman
,
A.
, and
Klein
,
M.
,
2012
, “
A Fatigue Model for Spur Gear Contacts Operating Under Mixed Elastohydrodynamic Lubrication Conditions
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041007
.
34.
Li
,
S.
, and
Wagner
,
J. J.
,
2016
, “
An Approach for the Gear Rolling Contact Fatigue Acceleration
,”
ASME J. Mech. Des.
,
138
(
3
), p.
034501
.
35.
Rabinowicz
,
E.
,
1995
,
Friction and Wear of Materials
,
Wiley
,
New York
.
36.
Meng
,
H. C.
, and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
, pp.
443
457
.
37.
Gosselin
,
C.
,
Guertin
,
T.
,
Remond
,
D.
, and
Jean
,
Y.
,
2000
, “
Simulation and Experimental Measurement of the Transmission Error of Real Hypoid Gears Under Load
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
109
122
.
38.
Bograd
,
S.
,
Reuss
,
P.
,
Schmist
,
A.
,
Gaul
,
L.
, and
Mayer
,
M.
,
2011
, “
Modeling the Dynamics of Mechanical Joints
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
2801
2826
.
39.
Talia
,
M.
,
Lankarani
,
H.
, and
Talia
,
J. E.
,
1999
, “
New Experimental Technique for the Study and Analysis of Solid Particle Erosion Mechanisms
,”
Wear
,
225–229
, pp.
1070
1077
.
40.
Bajpai
,
P.
,
Kahraman
,
A.
, and
Anderson
,
N. E.
,
2004
, “
A Surface Wear Prediction Methodology for Parallel-Axis Gear Pairs
,”
ASME J. Tribol.
,
126
(
3
), pp.
597
605
.
41.
Kahraman
,
A.
,
Bajpai
,
P.
, and
Anderson
,
N. E.
,
2005
, “
Influence of Tooth Profile Deviations on Helical Gear Wear
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
656
663
.
42.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A-Math. Phys. Sci.
,
295
(
1442
), pp.
300
319
.
43.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.
44.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
.
45.
Komvopoulos
,
K.
, and
Ye
,
N.
,
2000
, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
,
123
(
3
), pp.
632
640
.
46.
Chung
,
J. C.
, and
Lin
,
J. F.
,
2004
, “
Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces
,”
ASME J. Tribol.
,
126
(
4
), pp.
646
654
.
47.
Jiang
,
S.
,
Zheng
,
Y.
, and
Zhu
,
H.
,
2009
, “
A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory
,”
ASME J. Tribol.
,
132
(
1
), p.
011401
.
48.
Li
,
G.
,
Wang
,
Z. H.
, and
Kubo
,
A.
,
2016
, “
The Modeling Approach of Digital Real Tooth Surfaces of Hypoid Gears Based on Non-Geometric-Feature Segmentation and Interpolation Algorithm
,”
Int. J. Precis. Eng. Manuf.
,
17
(
3
), pp.
281
292
.
49.
Li
,
G.
,
Wang
,
Z. H.
, and
Kubo
,
A.
,
2017
, “
Error-Sensitivity Analysis for Hypoid Gears Using a Real Tooth Surface Contact Model
,”
Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci.
,
231
(
3
), pp.
507
521
.
50.
Ma
,
H.
,
Song
,
R. Z.
,
Pang
,
X.
, and
Wen
,
B. C.
,
2014
, “
Time-Varying Mesh Stiffness Calculation of Cracked Spur Gears
,”
Eng. Failure Anal.
,
44
, pp.
179
194
.
You do not currently have access to this content.