Friction is usually induced when the contacts are in relative motion, leading to mechanical vibration and consequently heat generation. The reduction of these undesirable parameters is possible by the application of greases, which intends to increase the service life of the bearings. The present work incorporates the frictional and vibration behaviors of concentrated point contact lubricated with bare and nanocomposite greases. The nanocomposite greases were formulated by dispersing different categories of nano-additives like reduced graphene oxide (rGO), calcium carbonate (CaCO3), and alumina (α-Al2O3) in bare grease (BG). The formulated nanocomposite greases are tested for film formation, frictional and vibrational response under a limited supply of greases. The use of transparent glass disk better analyses the profile of film thickness to understand the lubrication mechanism of the point contact. The microstructure of nano-additives and the formulated nanocomposite greases were characterized using high-resolution transmission electron microscopy (HRTEM). The presence of different functional groups in nano-additives and the formulated nanocomposite greases were characterized using Raman spectroscopy. The tribological contact operates under 3% and 30% slide-roll-ratio (SRR) for varying rolling speed (0.001–1 m/s) at a load of 30 N (Hertzian pressure, pH = 0.9 GPa). Film thickness, friction and vibration behavior were recorded to focus the tribo-performance, degree of starvation and dynamics of the tribological contact with slip varying from 3% to 30% SRR. The vibration level was refined to 32% with the addition of rGO nanosheets in BG. The incompatibility of α-Al2O3 with the grease structure results in disruption of tribo-dynamics behavior of the point contact.

References

References
1.
Cousseau
,
T.
,
Bjorling
,
M.
,
Graca
,
B.
,
Campos
,
A.
,
Seabra
,
J.
, and
Larsson
,
R.
,
2012
, “
Film Thickness in a Ball-on-Disc Contact Lubricated With Greases, Bleed Oils and Base Oils
,”
Tribol. Int.
,
53
, pp.
53
60
.
2.
Wilson
,
A. R.
,
1979
, “
The Relative Thickness of Grease and Oil Films in Rolling Bearings
,”
Proc. Inst. Mech. Eng.
,
193
(
1
), pp.
185
192
.
3.
Johnston
,
G. J.
,
Wayte
,
R.
, and
Spikes
,
H. A.
,
1991
, “
The Measurement and Study of Very Thin Lubricant Films in Concentrated Contacts
,”
Tribol. Trans.
,
34
(
2
), pp.
187
194
.
4.
Cann
,
P. M.
,
Spikes
,
H. A.
, and
Hutchinson
,
J.
,
1996
, “
The Development of a Spacer Layer Imaging Method (SLIM) for Mapping Elastohydrodynamic Contacts
,”
Tribol. Trans.
,
39
(
4
), pp.
915
921
.
5.
Spikes
,
H. A.
, and
Cann
,
P. M.
,
2001
, “
The Development and Application of the Spacer Layer Imaging Method for Measuring Lubricant Film Thickness
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
3
), pp.
261
277
.
6.
Smeeth
,
M.
, and
Spikes
,
H. A.
,
1996
, “
The Influence of Slide/Roll Ratio on the Film Thickness of an EHD Contact Operating Within the Mixed Lubrication Regime
,”
Tribol. Ser.
,
31
, pp.
695
703
.
7.
Huang
,
L.
,
Guo
,
D.
,
Wen
,
S.
, and
Wan
,
G. T. Y.
,
2014
, “
Effects of Slide/Roll Ratio on the Behaviours of Grease Reservoir and Film Thickness of Point Contact
,”
Tribol. Lett.
,
54
(
3
), pp.
263
271
.
8.
Gonçalves
,
D.
,
Graça
,
B.
,
Campos
,
A.
, and
Seabra
,
J.
,
2016
, “
On the Friction Behaviour of Polymer Greases
,”
Tribol. Int.
,
93
, pp.
399
410
.
9.
Ranganath Nayak
,
P.
,
1972
, “
Contact Vibrations
,”
J. Sound Vib.
,
22
(
3
), pp.
297
322
.
10.
Liu
,
T.
,
Li
,
G.
,
Wei
,
H.
, and
Sun
,
D.
,
2016
, “
Experimental Observation of Cross Correlation Between Vibration and Normal Friction Vibration in a Running-in Process
,”
Tribol. Int.
,
97
, pp.
77
88
.
11.
Sinou
,
J.-J.
,
Cayer-Barrioz
,
J.
, and
Berro
,
H.
,
2013
, “
Friction-Induced Vibration of a Lubricated Mechanical System
,”
Tribol. Int.
,
61
, pp.
156
168
.
12.
Soobbarayen
,
K.
,
Besset
,
S.
, and
Sinou
,
J.-J.
,
2013
, “
Noise and Vibration for a Self-Excited Mechanical System With Friction
,”
Appl. Acoust.
,
74
(
10
), pp.
1191
1204
.
13.
Lundberg
,
O. E.
,
Finnveden
,
S.
,
Bjorklund
,
S.
,
Parssinen
,
M.
, and
Lopez Arteaga
,
I.
,
2015
, “
A Nonlinear State-Dependent Model for Vibrations Excited by Roughness in Rolling Contacts
,”
J. Sound Vib.
,
345
, pp.
197
213
.
14.
Sayles
,
R. S.
, and
Poon
,
S. Y.
,
1981
, “
Surface Topography and Rolling Element Vibration
,”
Precis. Eng.
,
3
(
3
), pp.
137
144
.
15.
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2005
, “
Measurement and Modeling of Normal Contact Stiffness and Contact Damping at the Meso Scale
,”
ASME J. Vib. Acoust.
,
127
(
1
), pp.
52
60
.
16.
De Laurentis
,
N.
,
Kadiric
,
A.
,
Lugt
,
P.
, and
Cann
,
P.
,
2016
, “
The Influence of Bearing Grease Composition on Friction in Rolling/Sliding Concentrated Contacts
,”
Tribol. Int.
,
94
, pp.
624
632
.
17.
Couronne
,
I.
,
Vergne
,
P.
,
Mazuyer
,
D.
,
Truong-Dinh
,
N.
, and
Girodin
,
D.
,
2003
, “
Effects of Grease Composition and Structure on Film Thickness in Rolling Contact
,”
Tribol. Trans.
,
46
(
1
), pp.
31
36
.
18.
Gentle
,
C. R.
,
1983
, “
Effect of Proprietary Oil Additives on Elastohydrodynamic Film Thickness
,”
Tribol. Int.
,
16
(
4
), pp.
193
197
.
19.
Zulkifli
,
N. W. M.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
, and
Yunus
,
R.
,
2013
, “
Experimental Analysis of Tribological Properties of Biolubricant With Nanoparticle Additive
,”
Procedia Eng.
,
68
, pp.
152
157
.
20.
Hu
,
Z. S.
,
Lai
,
R.
,
Lou
,
F.
,
Wang
,
L. G.
,
Chen
,
Z. L.
,
Chen
,
G. X.
, and
Dong
,
J. X.
,
2002
, “
Preparation and Tribological Properties of Nanometer Magnesium Borate as Lubricating Oil Additive
,”
Wear
,
252
(
5–6
), pp.
370
374
.
21.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
.
22.
Qiu
,
S.
,
Zhou
,
Z.
,
Dong
,
J.
, and
Chen
,
G.
,
2001
, “
Preparation of Ni Nanoparticles and Evaluation of Their Tribological Performance as Potential Additives in Oils
,”
ASME J. Tribol.
,
123
(
3
), pp.
441
443
.
23.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lapsker
,
I.
,
Volovik
,
Y.
,
Nepomnyashchy
,
O.
,
Lvovsky
,
M.
,
Popovitz-biro
,
R.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
2003
, “
Tribological Properties of WS2 Nanoparticles Under Mixed Lubrication
,”
Wear
,
255
(
7–12
), pp.
785
793
.
24.
Jiao
,
D.
,
Zheng
,
S.
,
Wang
,
Y.
,
Guan
,
R.
, and
Cao
,
B.
,
2011
, “
The Tribology Properties of Alumina/Silica Composite Nanoparticles as Lubricant Additives
,”
Appl. Surf. Sci.
,
257
(
13
), pp.
5720
5725
.
25.
Wang
,
L.
,
Wang
,
B.
,
Wang
,
X.
, and
Liu
,
W.
,
2007
, “
Tribological Investigation of CaF2 Nanocrystals as Grease Additives
,”
Tribol. Int.
,
40
(
7
), pp.
1179
1185
.
26.
Zhao
,
G.
,
Zhao
,
Q.
,
Li
,
W.
,
Wang
,
X.
, and
Liu
,
W.
,
2014
, “
Tribological Properties of Nano-Calcium Borate as Lithium Grease Additive
,”
Lubr. Sci.
,
26
(
1
), pp.
43
53
.
27.
Pena-Paras
,
L.
,
Taha-Tijerina
,
J.
,
Garcia
,
A.
,
Maldonado
,
D.
,
Najera
,
A.
,
Cantu
,
P.
, and
Ortiz
,
D.
,
2015
, “
Thermal Transport and Tribological Properties of Nanogreases for Metal-Mechanic Applications
,”
Wear
,
332
, pp.
1322
1326
.
28.
Chen
,
J.
,
2010
, “
Tribological Properties of Polytetrafluoroethylene, Nano-Titanium Dioxide, and Nano-Silicon Dioxide as Additives in Mixed Oil-Based Titanium Complex Grease
,”
Tribol. Lett.
,
38
(
3
), pp.
217
224
.
29.
Chen
,
H.
,
Wei
,
H.
,
Chen
,
M.
,
Meng
,
F.
,
Li
,
H.
, and
Li
,
Q.
,
2013
, “
Enhancing the Effectiveness of Silicone Thermal Grease by the Addition of Functionalized Carbon Nanotubes
,”
Appl. Surf. Sci.
,
283
, pp.
525
531
.
30.
Martin
,
J. M.
, and
Ohmae
,
N.
,
2008
,
Nanolubricants
, Vol.
13
,
Wiley
,
Chichester, UK
.
31.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
,
2016
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Int.
,
102
, pp.
88
98
.
32.
Choudhary
,
S.
,
Mungse
,
H. P.
, and
Khatri
,
O. P.
,
2012
, “
Dispersion of Alkylated Graphene in Organic Solvents and Its Potential for Lubrication Applications
,”
J. Mater. Chem.
,
22
(
39
), pp.
21032
21039
.
33.
Mungse
,
H. P.
, and
Khatri
,
O. P.
,
2014
, “
Chemically Functionalized Reduced Graphene Oxide as a Novel Material for Reduction of Friction and Wear
,”
J. Phys. Chem. C
,
118
(
26
), pp.
14394
14402
.
34.
Lee
,
C.
,
Li
,
Q.
,
Kalb
,
W.
,
Liu
,
X.-Z.
,
Berger
,
H.
,
Carpick
,
R. W.
, and
Hone
,
J.
,
2010
, “
Frictional Characteristics of Atomically Thin Sheets
,”
Science
,
328
(
5974
), pp.
76
80
.
35.
Ji
,
X.
,
Chen
,
Y.
,
Zhao
,
G.
,
Wang
,
X.
, and
Liu
,
W.
,
2011
, “
Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease
,”
Tribol. Lett.
,
41
(
1
), pp.
113
119
.
36.
Jin
,
D.
, and
Yue
,
L.
,
2008
, “
Tribological Properties Study of Spherical Calcium Carbonate Composite as Lubricant Additive
,”
Mater. Lett.
,
62
(
10–11
), pp.
1565
1568
.
37.
Zhang
,
M.
,
Wang
,
X.
,
Fu
,
X.
, and
Xia
,
Y.
,
2009
, “
Performance and Anti-Wear Mechanism of CaCO3 Nanoparticles as a Green Additive in Poly-Alpha-Olefin
,”
Tribol. Int.
,
42
(
7
), pp.
1029
1039
.
38.
Radice
,
S.
, and
Mischler
,
S.
,
2006
, “
Effect of Electrochemical and Mechanical Parameters on the Lubrication Behaviour of Al2O3 Nanoparticles in Aqueous Suspensions
,”
Wear
,
261
(
9
), pp.
1032
1041
.
39.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2017
, “
Tribological and Vibration Studies on Newly Developed Nano-Composite Greases Under Boundary Lubrication Regime
,”
ASME J. Tribol.
,
140
(3), pp.
32001
32010
.
40.
Singh
,
J.
,
Anand
,
G.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2016
, “
Graphene Based Composite Grease for Elastohydrodynamic Lubricated Point Contact
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
149
, p. 012195.
41.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2017
, “
Development of Nanocomposite Grease: Microstructure, Flow, and Tribological Studies
,”
ASME J. Tribol.
,
139
(5), p. 052001.
42.
Katagiri
,
G.
,
Ishida
,
H.
, and
Ishitani
,
A.
,
1988
, “
Raman Spectra of Graphite Edge Planes
,”
Carbon
,
26
(
4
), pp.
565
571
.
43.
Wan
,
Q.
,
Jin
,
Y.
,
Sun
,
P.
, and
Ding
,
Y.
,
2014
, “
Rheological and Tribological Behaviour of Lubricating Oils Containing Platelet MoS2 Nanoparticles
,”
J. Nanopart. Res.
,
16
, p. 2386.
44.
Xu
,
N.
,
Zhang
,
M.
,
Li
,
W.
,
Zhao
,
G.
,
Wang
,
X.
, and
Liu
,
W.
,
2013
, “
Study on the Selectivity of Calcium Carbonate Nanoparticles Under the Boundary Lubrication Condition
,”
Wear
,
307
(
1–2
), pp.
35
43
.
45.
Bouzidi
,
M.
,
Firdaouss
,
M.
, and
Lallemand
,
P.
,
2001
, “
Momentum Transfer of a Boltzmann-Lattice Fluid With Boundaries
,”
Phys. Fluids
,
13
(
11
), pp.
3452
3459
.
46.
Ochoa-Tapia
,
Alberto
,
J.
, and
Whitaker
,
S.
,
1995
, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous fluid—Part I: Theoretical Development
,”
Int. J. Heat Mass Transfer
,
38
(
14
), pp.
2635
2646
.
47.
Cann
,
P. M.
,
1999
, “
Starved Grease Lubrication of Rolling Contacts
,”
Tribol. Trans.
,
42
(
4
), pp.
867
873
.
48.
Dareing
,
D. W.
, and
Jhonson
,
K. L.
,
1975
, “
Fluid Film Damping of Rolling Contact Vibrations
,”
J. Mech. Eng. Sci.
,
17
(
4
), pp.
214
218
.
49.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Poon
,
S. Y.
,
1972
, “
A Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication
,”
Wear
,
19
(
1
), pp.
91
108
.
50.
Wang
,
W.
,
Wang
,
S.
,
Shi
,
F.
,
Wang
,
Y.
,
Chen
,
H.
,
Wang
,
H.
, and
Hu
,
Y.
,
2007
, “
Simulations and Measurements of Sliding Friction Between Rough Surfaces in Point Contacts: From EHL to Boundary Lubrication
,”
ASME J. Tribol.
,
129
(
3
), pp.
495
501
.
51.
Sudeep
,
U.
,
Pandey
,
R. K.
, and
Tandon
,
N.
,
2013
, “
Effects of Surface Texturing on Friction and Vibration Behaviors of Sliding Lubricated Concentrated Point Contacts Under Linear Reciprocating Motion
,”
Tribol. Int.
,
62
, pp.
198
207
.
52.
Wijnant
,
Y. H.
,
Venner
,
C. H.
,
Larsson
,
R.
, and
Eriksson
,
P.
,
1999
, “
Effects of Structural Vibrations on the Film Thickness in an EHL Circular Contact
,”
ASME J. Tribol.
,
121
(
2
), pp.
259
264
.
53.
Shu
,
J.
,
Harris
,
K.
,
Munavirov
,
B.
,
Westbroek
,
R.
,
Leckner
,
J.
, and
Glavatskih
,
S.
,
2018
, “
Tribology of Polypropylene and Li-Complex Greases With ZDDP and MoDTC Additives
,”
Tribol. Int.
,
118
, pp.
189
195
.
You do not currently have access to this content.