The percolation threshold strongly affects sealing performance. This paper investigates the relationship between the percolation threshold and the rough surface anisotropy, which is represented by the Peklenik number, γ. A series of anisotropic rough surfaces were generated and the conjugate gradient-fast Fourier transform (CG-FFT) method was used to determine the percolation threshold. The percolation threshold was found to be A/A00.484±0.009 (averaged over 45 surfaces) was established for an isotropic rough surface (γ=1). Furthermore, it was also found that the percolation threshold decreased from A/A00.528±0.011 to A/A00.431±0.008 as 1/γ increased from 0.6 to 2. Our results differ from the theoretical result of Persson et al., where A/A0=γ/(1+γ). Comparing our calculated results with the theoretical results established the presence of an intersection value of 1/γ that was related to the effect of elastic deformation on the percolation threshold. When 1/γ was smaller than the intersection value, our calculated results were lower than the theoretical ones; and when 1/γ was greater than the intersection value, our calculated results were higher than the theoretical ones.

References

References
1.
Bruggeman
,
D. A. G.
,
1935
, “
Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen
,”
Ann. Phys.
,
416
(
7
), pp.
636
679
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
1442
), pp.
300
319
.
3.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
,
1975
, “
The Elastic Contact of a Rough Surface
,”
Wear
,
35
(
1
), pp.
87
111
.
4.
Greenwood
,
J. A.
,
2006
, “
A Simplified Elliptic Model of Rough Surface Contact
,”
Wear
,
261
(
2
), pp.
191
200
.
5.
Hyun
,
S.
,
Pei
,
L.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
,
2004
, “
Finite-Element Analysis of Contact Between Elastic Self-Affine Surfaces
,”
Phys. Rev. E
,
70
(
2 Pt. 2
), p.
026117
.
6.
Pei
,
L.
,
Hyun
,
S.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
,
2005
, “
Finite Element Modeling of Elasto-Plastic Contact Between Rough Surfaces
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2385
2409
.
7.
Yang
,
C.
,
Tartaglino
,
U.
, and
Persson
,
B. N. J.
,
2006
, “
A Multiscale Molecular Dynamics Approach to Contact Mechanics
,”
Eur. Phys. J. E
,
19
(
1
), pp.
47
58
.
8.
Pohrt
,
R.
, and
Popov
,
V. L.
,
2012
, “
Normal Contact Stiffness of Elastic Solids With Fractal Rough Surfaces
,”
Phys. Rev. Lett.
,
86
(
2
), p.
104301
.
9.
Zhang
,
F.
,
Liu
,
J.
,
Ding
,
X.
, and
Yang
,
Z.
,
2017
, “
An Approach to Calculate Leak Channels and Leak Rates Between Metallic Sealing Surfaces
,”
ASME J. Tribol.
,
139
(
1
), p.
011708
.
10.
Persson
,
B. N. J.
, and
Yang
,
C.
,
2008
, “
Theory of the Leak-Rate of Seals
,”
J. Phys.: Condens. Matter
,
20
(
31
), p.
315011
.
11.
Stauffer
,
D.
, and
Aharony
,
A.
,
1991
,
An Introduction to Percolation Theory
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
12.
Persson
,
B. N. J.
,
Prodanov
,
N.
,
Krick
,
B. A.
,
Rodriguez
,
N.
,
Mulakaluri
,
N.
,
Sawyer
,
W. G.
, and
Mangiagalli
,
P.
,
2012
, “
Elastic Contact Mechanics: Percolation of the Contact Area and Fluid Squeeze-Out
,”
Eur. Phys. J. E
,
35
(
1
), p.
5
.
13.
Li
,
W.
, and
Chien
,
W.
,
2004
, “
Parameters for Roughness Pattern and Directionality
,”
Tribol. Lett.
,
17
(
3
), pp.
547
551
.
14.
Dapp
,
W. B.
,
Lücke
,
A.
,
Persson
,
B. N. J.
, and
Müser
,
M. H.
,
2012
, “
Self-Affine Elastic Contacts: Percolation and Leakage
,”
Phys. Rev. Lett.
,
108
(
24
), p.
244301
.
15.
Putignano
,
C.
,
Afferrante
,
L.
,
Carbone
,
G.
, and
Demelio
,
G.
,
2013
, “
A Multiscale Analysis of Elastic Contacts and Percolation Threshold for Numerically Generated and Real Rough Surfaces
,”
Tribol. Int.
,
64
(
3
), pp.
148
154
.
16.
Manesh
,
K. K.
,
Ramamoorthty
,
B.
, and
Singaperumal
,
M.
,
2010
, “
Numerical Generation of Anisotropic 3D Non-Gaussian Engineering Surfaces With Specified 3D Surface Roughness Parameters
,”
Wear
,
268
(
11–12
), pp.
1371
1379
.
17.
Wang
,
Z.
,
Wang
,
W.
,
Hu
,
Y.
, and
Wang
,
H.
,
2010
, “
A Numerical Elastic-Plastic Contact Model for Rough Surfaces
,”
Tribol. Trans.
,
53
(
2
), pp.
224
238
.
18.
Patir
,
N.
,
1978
, “
A Numerical Procedure for Random Generation of Rough Surfaces
,”
Wear
,
47
(
2
), pp.
263
277
.
19.
Barber
,
J. R.
,
2010
,
Elasticity
,
3rd ed.
,
Springer
,
Dordrecht, The Netherlands
.
20.
Wang
,
W.
,
Hu
,
Y.
, and
Wang
,
H.
,
2006
, “
Numerical Solution of Dry Contact Problem Based on Fast Fourier Transform and Conjugate Gradient Method
,”
Chin. J. Mech. Eng.
,
42
(
7
), p.
14
.
21.
Barber
,
J. R.
,
2013
, “
Incremental Stiffness and Electrical Contact Conductance in the Contact of Rough Finite Bodies
,”
Phys. Rev. E
,
87
(
1
), p.
013203
.
22.
Yastrebov
,
V. A.
,
Anciaux
,
G.
, and
Molinari
,
J. F.
,
2015
, “
From Infinitesimal to Full Contact Between Rough Surfaces: Evolution of the Contact Area
,”
Int. J. Solids. Struct.
,
52
, pp.
83
102
.
You do not currently have access to this content.