We investigated the wear resistance properties of high-frequency induction heat (HFIH) sintered alumina (Al2O3) ceramic nanocomposites containing various multilayer graphene (MLG) concentrations. The tribology of the monolithic Al2O3 and nanocomposites samples was assessed against spherical ceramic (Si3N4) counter sliding partner at sliding loads ranging from 6 to 40 N using ball-on-disk wear test configuration. Compared with the monolithic Al2O3, the incorporation of 1.0 vol % MLG reduced the friction coefficient by 25% and the wear rate by 65% in the MLG/Al2O3 nanocomposites tested under 40 N sliding load. Based on the mechanical properties, brittle index, and microstructure, the active wear mechanisms for the nanocomposites were analyzed. The MLG contributed in the nanocomposites tribology process, indirectly, by enhancing the mechanical properties and, directly, by reducing the friction between the counter sliding partners. The synergistic role of MLG thin triboflim and twirled MLG for improving the tribological performance of the nanocomposites is discussed.

References

1.
Liang
,
Y.
, and
Dutta
,
S.
,
2001
, “
Application Trend in Advanced Ceramic Technologies
,”
Technovation
,
21
(
1
), pp.
61
65
.
2.
Allen
,
C.
, and
Ball
,
A.
,
1996
, “
A Review of the Performance of Engineering Materials Under Prevalent Tribological and Wear Situations in South African Industries
,”
Tribol. Int.
,
29
(
2
), pp.
105
116
.
3.
Chevalier
,
J.
, and
Gremillard
,
L.
,
2009
, “
Ceramics for Medical Applications: A Picture for the Next 20 Years
,”
J. Eur. Ceram. Soc.
,
29
(
7
), pp.
1245
1255
.
4.
Ahmad
,
I.
,
Yazdani
,
B.
, and
Zhu
,
Y. Q.
,
2015
, “
Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites
,”
Nanomaterials
,
5
(
1
), pp.
90
114
.
5.
Gangopadhyay
,
A.
,
Jahanmir
,
S.
, and
Peterson
,
M.
,
1994
, “
Self-Lubricating Ceramic Matric Composites
,”
Book Friction and Wear of Ceramics
,
Marcel Dekker
,
New York
.
6.
Yu
,
C. Y.
, and
Kellett
,
B. J.
,
1996
, “
Tribology of alumina-graphite composites
,” 20th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures, Cocoa Beach, FL, Jan. 7–11, pp. 220–227.
7.
Jeong
,
Y. K.
,
Nakahira
,
A.
, and
Niihara
,
K.
,
1999
, “
Effects of Additives on Microstructure and Properties of Al2O3–Silicon Carbide Nanocomposites
,”
J. Am. Ceram. Soc.
,
82
(
12
), pp.
3609
3612
.
8.
Ahmad
,
I.
,
Ahmed
,
S.
,
Subhani
,
T.
,
Saeed
,
K.
,
Islam
,
M.
,
Wang
,
N.
, and
Zhu
,
Y. Q.
,
2016
, “
Synergic Influence of MWCNTs and SiC Nanoparticles on the Microstructure and Properties of Al2O3 Ceramic Hybrid Nanocomposites
,”
Curr. Appl. Phys.
,
16
(
12
), pp.
1649
1658
.
9.
Zapata-Solvas
,
E.
,
Gómez-García
,
D.
, and
Domínguez-Rodríguez
,
A.
,
2012
, “
Towards Physical Properties Tailoring of Carbon Nanotubes–Reinforced Ceramic Matrix Composites
,”
J. Eur. Ceram. Soc.
,
32
(
12
), pp.
3001
3020
.
10.
Ahmad
,
I.
,
Islam
,
M.
,
Subhani
,
T.
, and
Zhu
,
Y. Q.
,
2016
, “
Toughness Enhancement in Graphene Nanoplatelet/SiC Reinforced Al2O3 Ceramic Hybrid Nanocomposites
,”
Nanotechnology
,
27
(
42
), p.
425704
.
11.
Ahmad
,
I.
,
Kennedy
,
A.
, and
Zhu
,
Y. Q.
,
2010
, “
Wear Resistant Properties of Multi-Walled Carbon Nanotubes Reinforced Al2O3 Nanocomposites
,”
Wear
,
269
(
1–2
), pp.
71
78
.
12.
An
,
J. W.
,
You
,
D. H.
, and
Lim
,
D. S.
,
2003
, “
Tribological Properties of Hot-Pressed Alumina–MWCNTs Composites
,”
Wear
,
225
(
1–6
), pp.
677
681
.
13.
Go
,
Y.
,
Mamoru
,
O.
, and
Koshi
,
A.
,
2008
, “
Structural Characterization and Frictional Properties of Carbon Nanotube/Alumina Composite Prepared by Precursor Method
,”
Mater. Sci. Eng. B
,
148
(
1–3
), pp.
265
269
.
14.
Kasperski
,
A.
,
Weibel
,
C.
,
Estourne
,
C.
, and
Laurent
,
A.
,
2014
, “
Multi-Walled Carbon Nanotube–Al2O3 Composites: Covalent or Non-Covalent Functionalization for Mechanical Reinforcement
,”
Scr. Mater.
,
75
, pp.
46
49
.
15.
Flahaut
,
E.
,
Peigney
,
A.
,
Laurent
,
C.
,
Marlière
,
C.
,
Chastel
,
F.
, and
Rousset
,
A.
,
2000
, “
Carbon Nanotube–Metal–Oxide Nanocomposites: Microstructure, Electrical Conductivity and Mechanical Properties
,”
Acta Mater.
,
48
(
14
), pp.
3803
3812
.
16.
Estili
,
M.
,
Kawasaki
,
A.
,
Sakamoto
,
H.
,
Mekuchi
,
Y.
,
Kuno
,
M.
, and
Tsukada
,
T.
,
2008
, “
The Homogeneous Dispersion of Surfactantless, Slightly Disordered, Crystalline, Multiwalled Carbon Nanotubes in α-Alumina Ceramics for Structural Reinforcement
,”
Acta Mater.
,
56
(
15
), pp.
4070
4079
.
17.
Sarkar
,
S.
, and
Das
,
P. K.
,
2014
, “
Processing and Properties of Carbon Nanotube/Alumina Nanocomposites: A Review
,”
Rev. Adv. Mater. Sci.
,
37
, pp.
53
82
.
18.
Geim
,
K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nat. Mat.
,
6
(
3
), pp.
183
191
.
19.
Porwal
,
H.
, and
Reece
,
M. J.
,
2013
, “
Review of Graphene–Ceramic Matrix Composites
,”
Adv. Appl. Ceram.
,
12
(
8
), pp.
443
454
.
20.
Fan
,
Y.
,
Estili
,
M.
,
Igarashi
,
G.
,
Jiang
,
W.
, and
Kawasaki
,
A.
,
2014
, “
The Effect of Homogeneously Dispersed Few-Layer Graphene on Microstructure and Mechanical Properties of Al2O3 Nanocomposites
,”
J. Eur. Ceram. Soc.
,
34
(
2
), pp.
443
451
.
21.
Wang
,
K.
,
Yan
,
J.
, and
Wei
,
T.
,
2011
, “
Preparation of Graphene Nanosheets/Alumina Composites by Spark Plasma Sintering
,”
Mater. Res. Bull.
,
4
(
2
), pp.
315
318
.
22.
Jain
,
L.
,
Yan
,
H.
, and
Jiang
,
K. C.
,
2013
, “
Mechanical Properties of Graphene Platelets-Reinforced Alumina Ceramics Composites
,”
Ceram. Int.
,
39
(
6
), pp.
6215
6221
.
23.
Porwal
,
H.
,
Tatarko
,
P.
,
Grasso
,
S.
,
Khaliq
,
J.
, and
Reece
,
M. J.
,
2013
, “
Graphene Reinforced Alumina Nano-Composites
,”
Carbon
,
64
, pp.
359
369
.
24.
Ahmad
,
I.
,
Islam
,
M.
,
Subhani
,
T.
,
Yazdani
,
B.
, and
Zhu
,
Y. Q.
,
2015
, “
Toughening Mechanisms and Mechanical Properties of Graphene Nanosheet-Reinforced Alumina
,”
Mat. Des.
,
88
, pp.
1234
1243
.
25.
Kato
,
K.
, and
Adachi
,
K.
,
2002
, “
Wear of Advanced Ceramics
,”
Wear
,
253
(
11–12
), pp.
1097
1104
.
26.
Belmonte
,
M.
,
Ramírez
,
C.
,
Jesus
,
G. J.
, and
Maria
,
I. O.
,
2013
, “
The Beneficial Effect of Graphene Nanofillers on the Tribological Performance of Ceramics
,”
Carbon
,
61
, pp.
431
435
.
27.
Shen
,
X. J.
,
Pei
,
X. Q.
,
Fu
,
S. Y.
, and
Friedrich
,
K.
,
2013
, “
Significantly Modified Tribological Performance of Epoxy Nanocomposites at Very Low Graphene Oxide Content
,”
Polymer
,
54
(
3
), pp.
1234
1242
.
28.
Shen
,
X. J.
,
Pei
,
X. Q.
, and
Fu
,
S. Y.
,
2014
, “
Tribological Performance of Carbon Nanotube–Graphene Oxide Hybrid/Epoxy Composites
,”
Compos. Part B
,
57
, pp.
120
125
.
29.
Porwal
,
H.
,
Tatarko
,
P.
,
Saggar
,
R.
,
Grasso
,
S.
,
Kumar
,
M.
, and
Reece
,
M. J.
,
2014
, “
Tribological Properties of Silica-Graphene Nano-Platelet Composites
,”
Ceram. Int.
,
40
(
8
), pp.
12067
12074
.
30.
Kim
,
H. J.
,
Lee
,
S. M.
,
Oh
,
Y. S.
,
Yang
,
Y. H.
,
Lim
,
Y. S.
,
Yoon
,
D. H.
,
Lee
,
C.
,
Kim
,
J. Y.
, and
Ruoff
,
R. S.
,
2014
, “
Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix
,”
Sci. Rep.
,
4
(5), p.
5176
.
31.
Hvizdos
,
P.
,
Dusza
,
J.
, and
Balazsi
,
C.
,
2013
, “
Tribological Properties of Si3N4-Graphene Nanocomposites
,”
J. Euro. Ceram. Soc.
,
33
(
12
), pp.
2359
2364
.
32.
Kvetkova
,
L.
,
Duszova
,
A.
,
Hvizdos
,
P.
,
Dusza
,
J.
,
Kun
,
P.
, and
Balazsi
,
C.
,
2012
, “
Fracture Toughness and Toughening Mechanisms in Graphene Platelet Reinforced Si3N4 Composites
,”
Scr. Mater.
,
66
(
10
), pp.
793
796
.
33.
Gutiérrez-Mora
,
F.
,
Cano-Crespo
,
R.
, and
Domínguez-Rodrígue
,
A.
,
2017
, “
Friction and Wear Behavior of Alumina-Based Graphene and CNFs Composites
,”
J. Eur. Ceram. Soc.
,
37
(
12
), pp.
3805
3812
.
34.
Pei
,
S.
, and
Cheng
,
H. M.
,
2012
, “
The Reduction of Graphene Oxide
,”
Carbon
,
50
(
9
), pp.
3210
3228
.
35.
Yazdani
,
B.
,
Xi
,
Y.
,
Ahmad
,
I.
, and
Zhu
,
Y. Q.
,
2015
, “
Tribological Performance of Graphene/Carbon Nanotube Hybrid Reinforced Al2O3 Composites
,”
Sci. Rep.
,
5
, p.
11579
.
36.
Boccaccini
,
A. R.
,
1999
, “
The Relationship Between Wear Behaviour and Brittleness Index in Engineering Ceramics and Dispersion Reinforced Ceramic Composites
,”
Ceram. Int.
,
48
(3), pp.
176
187
.
37.
Fan
,
Y. C.
,
Wang
,
L. J.
,
Li
,
J. L.
,
Li
,
J. Q.
,
Sun
,
S. K.
,
Chen
,
F.
,
Chen
,
L. D.
, and
Jiang
,
W.
,
2010
, “
Preparation and Electrical Properties of Graphene Nanosheet/Al2O3 Composites
,”
Carbon
,
48
(
6
), pp.
1743
1749
.
38.
Evan
,
G.
,
Hockey
,
B. J.
, and
Rice
,
R. W.
,
1979
, “
The Science of Ceramics Machining and Surface Finishing
,” United States Department of Commerce, Washington, DC, pp. 1–14.
39.
Jose
,
M.
, and
Todd
,
R.
,
2005
, “
Relationship Between Wear Rate, Surface Pull-out and Microstructure During Abrasive Wear of Alumina and Alumina/SiC Nanocomposites
,”
Acta Mater.
,
53
(
12
), pp.
3345
3357
.
40.
Wang
,
Y. S.
,
Hockey
,
B. J.
, and
Hsu
,
S. M.
,
1995
, “
Wear Transition in Monolithic Alumina and Zirconia–Alumina Composites
,”
Wear
,
181
, pp.
156
164
.
41.
Cho
,
S. J.
,
Hockey
,
B. J.
,
Lawn
,
B. R.
, and
Bennison
,
S. J.
,
1989
, “
Grain-Size and R-Curve Effects in the Abrasive Wear of Alumina
,”
J. Am. Ceram. Soc.
,
72
(
7
), pp.
1249
1252
.
42.
Li
,
H.
,
Xie
,
Y.
,
Li
,
K.
, and
Zheng
,
X.
,
2014
, “
Microstructure and Wear Behavior of Graphene Nanosheets-Reinforced Zirconia Coating
,”
Ceram. Int.
,
40
(
8
), pp.
12821
12829
.
43.
Gutiérrez-González
,
C. F.
,
Smirnov
,
A.
,
Centeno
,
A.
, and
Bartolomé
,
J. F.
,
2015
, “
Wear Behavior of Graphene/Alumina Composite
,”
Ceram. Int.
,
41
(
6
), pp.
7434
7438
.
44.
Ishigaki
,
H.
,
Kawaguchi
,
I.
,
Iwasa
,
M.
, and
Toibana
,
Y.
,
1985
, “
Friction and Wear of Hot Pressed Silicon Nitride and Other Ceramics
,”
J. Tribol.
,
108
(
4
), pp.
514
521
.
45.
Quanshun
,
L.
,
2013
, “
Tribofilms in Solid Lubricants
,”
Encyclopedia of Tribology
,
Springer
,
Boston, MA
.
46.
Pastewke
,
L.
,
Moser
,
S.
,
Gumbsch
,
P.
, and
Moseler
,
M.
,
2011
, “
Anisotropic Mechanical Amorphization Drives Wear in Diamond
,”
Nat. Mater.
,
10
(
1
), pp.
34
38
.
47.
Zhnag
,
C.
,
Agarwal
,
A.
, and
Nieto
,
A.
,
2016
, “
Ultrathin Graphene Tribofilm Formation During Wear of Al2O3-Graphene Composites
,”
Nanomater. Energy
,
5
(
1
), pp.
1
9
.
48.
Inam
,
F.
,
Vo
,
T.
, and
Bhat
,
B.
,
2014
, “
Structural Stability Studies of Graphene in Sintered Ceramic Nanocomposites
,”
Ceram. Int.
,
40
(
10
), pp.
16227
16233
.
You do not currently have access to this content.