During the last decades, there has been an increased interest in the use of lignin-based composites following the ideas of developing green materials for fossil-based raw materials substitution. The biopolymer Arboform is a mixture of lignin, plant fibers, and additives, which is nowadays successfully used in many applications. As a thermoplastic, it can be molded and is therefore also called “liquid wood.” In this paper, we report a study comparing the nanomechanical and tribological properties of Arboform (AR), and Aramid-reinforced Arboform (AR-AF) composite biopolymers. The samples were produced in an industrial-scale injection molding machine. Nanoindentation experiments have revealed that, in both series of biopolymer samples, an increase in temperature or a change in the injection direction from 0 deg to 90 deg produces an increase in hardness. On the other hand, Young's modulus is slightly affected by the increase in temperature, and not affected by the injection angle. Tribological characterization has shown that all samples, except the AR-AF injected at 175 °C, present noticeable wear and have a similar friction coefficients μ ∼ 0.44–0.49 at Hertzian contact pressures p0 between 90 and 130 MPa. Interestingly, the reinforced polymer produced at 175 °C shows no wear and low friction of μ ∼ 0.19 at p0 = 90 MPa. Our results show that the reinforced Arboform biopolymers are a good candidate to replace other polymers in many mechanical and tribological applications.

References

References
1.
Biron
,
M.
,
2016
,
Industrial Applications of Renewable Plastics: Environmental, Technological, and Economic Advances
,
Elsevier
,
Oxford, UK
.
2.
Calvo-Flores
,
F. G.
,
Dobado
,
J. A.
,
Isaac-Garcia
,
J.
, and
Martin-Martinez
,
F. J.
,
2015
,
Lignin and Lignans as Renewable Raw Materials: Chemistry, Technology and Applications
,
Wiley
,
Chichester, UK
.
3.
Sarkanen
,
S.
,
1997
, “
The First Alkylated 95-100% Kraft Lignin-Based Plastics
,” Ninth International Symposium on Wood and Pulping Chemistry, Montreal, QC, Canada, June 9–12, p. 63.
4.
Michael
,
D.
,
2004
,
Bioplastics Supply Chains—Implications and Opportunities for Agriculture—A Report for the Rural Industries Research and Development Corporation
,
Wondu Holdings
,
Bondi Junction, Australia
.
5.
Sen
,
S.
,
Patil
,
S.
, and
Argyropoulos
,
D. S.
,
2015
, “
Thermal Properties of Lignin in Copolymers, Blends, and Composites: A Review
,”
Green Chem.
,
17
(
11
), pp.
4862
4887
.
6.
Naseem
,
A.
,
Tabasum
,
S.
,
Zia
,
K. M.
,
Zuber
,
M.
,
Ali
,
M.
, and
Noreen
,
A.
,
2016
, “
Lignin-Derivatives Based Polymers, Blends and Composites: A Review
,”
Int. J. Biol. Macromol.
,
93
, pp.
296
313
.
7.
Höfer
,
R.
,
2009
,
Sustainable Solutions for Modern Economies
,
Royal Society of Chemistry
,
London
, UK, pp.
328
330
.
8.
Plăvănescu
,
S.
,
2014
, “
Biodegradable Composite Materials—Arboform: A Review
,”
Int. J. Mod. Manuf. Technol.
,
6
(
2
), pp.
63
84
.http://www.ijmmt.ro/vol6no22014/Plavanescu_Simona.pdf
9.
Naegele
,
H.
,
Pfitzer
,
J.
,
Ziegler
,
L.
,
Inone-Kauffmann
,
E.
, and
Eisenreich
,
N.
,
2015
, “
Applications of Lignin Materials and Their Composites
,”
Lignin in Polymer Composites
,
Elsevier
,
Oxford, UK
, pp.
233
241
.
10.
Fraunhofer-Gesellschaft,
2018
, “
Toys Made of Liquid Wood
,” ScienceDaily, Rockville, MD, accessed July 27, 2008, www.sciencedaily.com/releases/2008/12/081202115326.htm
11.
Defosse
,
M.
,
2010
, “
Plastics in E/E: Fujitsu Launches Injection Molded Bioplastic Keyboard
,” Plastics Today, Santa Monica, CA, accessed July 27, 2018, https://www.plasticstoday.com/content/plastics-ee-fujitsu-launches-injection-molded-bioplastic-keyboard/43561779414092
12.
Wordpress.com,
2012
, “
Bioplastics Builds a Green Future
,” San Francisco, CA, accessed July 27, 2018, https://myplasticsblog.wordpress.com/tag/bio-based-foam-for-auto-interiors/
13.
Nagele
,
H.
, and
Pitzer
,
J.
,
2008
, “
Lignin Matrix Composites for Loudspeaker Boxes
,”
Bioplast. Mag.
,
3
(
4
), pp.
17
17
.
14.
Nagele
,
H.
,
Pfitzer
,
J.
,
Nagele
,
E.
,
Inone
,
E.
,
Eisenreich
,
N.
,
Eckl
,
W.
, and
Eyerer
,
P.
,
2002
, “
Arboform—A Thermoplastic, Processable Material From Lignin and Natural Fibres
,”
Chemical Modification, Properties, and Usage of Lignin
,
Springer
,
New York
, pp.
101
119
.
15.
Nedelcu
,
D.
,
Plavanescu
,
S.
, and
Paunoiu
,
V.
,
2015
, “
Study of Microstructure and Mechanical Properties of Injection Molded Arboform Parts
,”
Indian J. Eng. Mater. Process.
,
22
(5), pp.
534
540
.http://nopr.niscair.res.in/handle/123456789/33436
16.
Nedelcu
,
D.
,
Santo
,
L.
,
Santos
,
A.
, and
Plavanescu
,
S.
,
2015
, “
Mechanical Behaviour Evaluation of Arboform Material Samples by Bending Deflection Test
,”
Mater. Plast.
,
52
(
4
), pp.
423
426
.http://www.revmaterialeplastice.ro/pdf/PAUN%20V.pdf%204%2015.pdf
17.
Nedelcu
,
D.
,
Ciofu
,
C.
, and
Lohan
,
N.
,
2013
, “
Microindentation and Differential Scanning Calorimetry of ‘Liquid Wood
,”
Compos.: Part B
,
55
, pp.
11
15
.
18.
Oliver
,
W.
, and
Pharr
,
G.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.
19.
Díez-Pascual
,
A.
,
Gómez-Fatou
,
M.
,
Ania
,
A.
, and
Flores
,
A.
,
2015
, “
Nanoindentation in Polymer Nanocomposites
,”
Prog. Mater. Sci.
,
67
, pp.
1
94
.
20.
Constantin
,
C.
,
Plăvănescu
,
S.
, and
Nedelcu
,
D.
,
2015
, “
Impact Comparative Study of Phone Carcasses Behavior by FEM
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
87
, p.
012100
.
21.
Kese
,
K.
,
Olsson
,
P.
,
Alvarez Holston
,
A.-M.
, and
Broitman
,
E.
,
2017
, “
High Temperature Nanoindentation Hardness and Young's Modulus Measurement in a Neutron-Irradiated Fuel Cladding Material
,”
J. Nucl. Mater.
,
487
, pp.
113
120
.
22.
Kindlund
,
H.
,
Greczynski
,
G.
,
Broitman
,
E.
,
Martínez-de-Olcoz
,
L.
,
Lu
,
J.
,
Jensen
,
J.
,
Petrov
,
I.
,
Greene
,
J. E.
,
Birch
,
J.
, and
Hultman
,
L.
,
2017
, “
V0.5Mo0.5Nx/MgO(001): Composition, Nanostructure, and Mechanical Properties as a Function of Film Growth Temperature
,”
Acta Mater.
,
126
, pp.
194
201
.
23.
Broitman
,
E.
,
2017
, “
Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview
,”
Tribol. Lett.
,
65
(
1
), p.
23
.
24.
Fischer-Cripps
,
A.
,
2011
,
Nanoindentation
,
Springer
,
New York
.
25.
Odegard
,
G. M.
,
Gates
,
T. S.
, and
Herring
,
H. M.
,
2005
, “
Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation
,”
Exp. Mech.
,
45
(
2
), pp.
130
136
.
26.
Chen
,
Z.
, and
Diebels
,
S.
,
2012
, “
Surface Roughness Effects in Nanoindentation of Soft Polymers
,”
Proc. Appl. Math. Mech.
,
12
(
1
), pp.
287
298
.
27.
Shen
,
L.
,
Liu
,
T.
, and
Lv
,
P.
,
2005
, “
Polishing Effect on Nanoindentation Behavior of Nylon 66 and Its Nanocomposites
,”
Polym. Test.
,
24
(
6
), pp.
746
749
.
28.
Baltá Calleja
,
F. J.
, and
Fakirov
,
S.
,
2007
,
Microhardness of Polymers
,
Cambridge University Press
,
Cambridge, UK
.
29.
Flores
,
A.
,
Ania
,
F.
, and
Baltá-Calleja
,
F. J.
,
2009
, “
From the Glassy State to Ordered Polymer Structures: A Microhardness Study
,”
Polymer
,
50
(
3
), pp.
729
746
.
30.
La Carubba
,
V.
,
Brucato
,
V.
, and
Piccarolo
,
S.
,
2002
, “
Influence of Controlled Processing Conditions on the Solidification of iPP, PET, and PA6
,”
Macromol. Symp.
,
180
(
1
), pp.
43
59
.
31.
Maries
,
G. R. D.
,
Chira
,
D.
,
Bungau
,
C.
,
Costea
,
T.
, and
Moldovan
,
L.
,
2017
, “
Determining the Influence of the Processing Temperature by Injection and of the Subsequent Pressure on the Surface's Hardness and Indentation Modulus of the Products Made of HDPE, PMMA, PC+ABS Through Nanoindentation
,”
Mater. Plast.
,
54
(
2
), pp.
214
220
.http://www.revmaterialeplastice.ro/pdf/4%20MARIES%202%2017.pdf
32.
Johnson
,
B.
,
2006
, “
The Influence of Processing on Properties of Injection-Molded and Non-Molded Components
,” Ph.D. thesis, University of Stellenbosch, Stellenbosch, South Africa.
33.
Klein
,
R.
,
2011
, “
Material Properties of Plastics
,”
Laser Welding of Plastics: Materials, Processes and Industrial Applications
,
Wiley‐VCH Verlag GmbH
,
Berlin
, pp.
3
69
.
34.
Liparoti
,
S.
,
Speranza
,
V.
,
Sorrentino
,
A.
, and
Titomanlio
,
G.
,
2017
, “
Mechanical Properties Distribution Within Polypropylene Injection Molded Samples: Effect of Mold Temperature Under Uneven Thermal Conditions
,”
Polymer
,
9
(
11
), p.
585
.
35.
Broitman
,
E.
,
2014
, “
The Nature of the Frictional Force at the Macro-, Micro-, and Nano-Scales
,”
Friction
,
2
(
1
), pp.
40
46
.
36.
McKeen
,
L. W.
,
2016
,
Fatigue and Tribological Properties of Plastics and Elastomers
,
Elsevier
,
Amsterdam, The Netherlands
, Chap. 2.
37.
Hertz
,
H. R.
,
1882
, “
Ueber Die Beruehrung Elastischer Koerper (on Contact Between Elastic Bodies)
,”
J. Für Die Reine Und Angewandte Mathematik (Crelle's J.)
,
1882
(
92
), pp.
156
171
.
38.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surface
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
You do not currently have access to this content.