Soft solids, such as rubbers, elastomers, and gels, are the important polymeric materials. A better understanding of their interfacial properties such as friction and adhesion is critical for variety of technological applications. Motivated by the experimental observation that interfacial properties can be modified even without changing the content of a soft solid, the effect of specimen thickness on the energy release rate (G) of a soft gelatin hydrogel is investigated in direct shear test. Slide-hold-slide (SHS) experiments have shown that shear strength decreases, while corresponding crack length increases, with increase in thickness of gel specimens. However, G at static, dynamic and residual strengths increase with specimen thickness. At the end, these observations are explained in light of mixed mode I/II fracture and shear rate effects at the sliding interface.

References

References
1.
Gong
,
J. P.
, and
Osada
,
Y.
,
2002
, “
Surface Friction of Polymer Gels
,”
Prog. Polym. Sci.
,
27
(
1
), pp.
3
38
.
2.
Shull
,
K. R.
,
2002
, “
Contact Mechanics and Adhesion of Soft Solids
,”
Mater. Sci. Eng. R
,
36
(
1
), pp.
1
45
.
3.
Jagota
,
A.
, and
Hui
,
C. Y.
,
2011
, “
Adhesion, Friction, and Compliance of Bio-Mimetic and Bio-Inspired Structured Interfaces
,”
Mater. Sci. Rev. R
,
72
, pp.
253
292
.
4.
Creton
,
C.
, and
Ciccotti
,
M.
,
2016
, “
Fracture and Adhesion of Soft Materials: A Review
,”
Rep. Prog. Phys.
,
79
(
4
), p.
046601
.
5.
Wang
,
Z.
,
Chen
,
C.
,
Liu
,
Q.
,
Lou
,
Y.
, and
Suo
,
Z.
,
2017
, “
Extrusion, Slide and Rupture of an Elastomeric Seal
,”
J. Mech. Phys. Solids
,
99
, pp.
289
303
.
6.
Baumberger
,
T.
,
Caroli
,
C.
, and
Ronsin
,
O.
,
2003
, “
Self-Healing Pulses and Friction of Gelatin Gels
,”
Eur. Phys. J. E
,
11
(
1
), pp.
85
93
.
7.
Yamaguchi
,
T.
,
Ohmata
,
S.
, and
Doi
,
M.
,
2009
, “
Regular to Chaotic Transition of Stick-Slip Motion in Sliding Friction of an Adhesive Gel-Sheet
,”
J. Phys. Condens. Matter
,
21
(
20
), p.
205105
.
8.
Thakre
,
A. A.
, and
Singh
,
A. K.
,
2018
, “
An Experimental Study on Stick-Slip of Gelatin Hydrogels Using Fracture
,”
Mat. Res. Express
,
5
(
8
), p.
085301
.
9.
Singh
,
A. K.
, and
Juvekar
,
V. A.
,
2011
, “
Steady Dynamic Friction at Elastomer and Hard Solid Interface: A Model Based on Population Balance of Bonds
,”
Soft Matter
,
7
(
22
), pp.
1060101
1060111
.
10.
Chai
,
H.
,
1988
, “
Shear Fracture
,”
Int. J. Fracture
,
37
, pp.
137
159
.
11.
Ghatak
,
A.
,
Mahadevan
,
L.
, and
Chaudhury
,
M. K.
,
2005
, “
Measuring the Work of Adhesion Between a Soft Confining Film and a Flexible Plate
,”
Langmuir
,
21
(
4
), pp.
1277
1281
.
12.
Kaneko
,
D.
,
Oshikawa
,
M.
,
Yamaguchi
,
T.
,
Gong
,
J. P.
, and
Doi
,
M.
,
2007
, “
Friction Coefficient Between Rubber and Solid Substrate-Effect of Rubber Thickness
,”
J. Phys. Soc. Jpn.
,
76
(
4
), p.
043601
.
13.
Chaudhary
,
M. K.
, and
Kim
,
K. H.
,
2007
, “
Shear Induced Adhesive Failure of a Rigid Slab in Contact With a Thin Confined Film
,”
Eur. Phys. J. E
,
23
(
2
), pp.
175
183
.
14.
Lin
,
Y.
,
Chang
,
C.
, and
Lee
,
W.
,
2008
, “
Effects of Thickness on the Largely Deformed JKR (Johnson-Kendall-Roberts) Test of Soft Elastic Layers
,”
Int. J. Solids Struct.
,
45
(
7–8
), pp.
2220
2232
.
15.
Ji
,
G.
,
Ouyang
,
Z.
,
Li
,
G.
,
Ibekwe
,
S.
, and
Pang
,
S.
,
2010
, “
Effects of Adhesive Thickness on Global and Local Mode I Interfacial Fracture of Bonded Joints
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2445
2458
.
16.
Gupta
,
V.
, and
Singh
,
A. K.
,
2016
, “
Scaling Laws of Gelatin Hydrogels for Steady Dynamic Friction
,”
Int. J. Mod. Phys. B
,
30
(
26
), p.
1650198
.
17.
Gupta
,
V.
, and
Singh
,
A. K.
,
2018
, “
Stress Relaxation at a Gelatin Hydrogel–Glass Interface in Direct Shear Sliding
,”
Mod. Phys. Lett. B
,
32
(
2
), p.
1750345
.
18.
Thakre
,
A. A.
, and
Singh
,
A. K.
,
2018
, “
Frictional Study of the Soft and Hard Solid Interface Using Response Surface Methodology
,”
ASME J. Tribol.
,
140
(
4
), p.
041601
.
19.
Thakre
,
A. A.
, and
Singh
,
A. K.
,
2018
, “
Energy Release Rate of Gelatin Hydrogels on Glass Surface in Direct Shear Sliding Experiments
,”
J. Adhes. Sci. Technol.
,
32
(
17
), pp.
1899
1910
.
20.
Singh
,
A. K.
, and
Juvekar
,
V. A.
,
2016
, “
Rate and Aging Time Dependent Static Friction of a Soft and Hard Solid Interface
,” Cornell University library, Ithaca, NY, eprint
arXiv:1602.00973
.https://arxiv.org/abs/1602.00973
21.
Thakre
,
A. A.
, and
Singh
,
A. K.
,
2018
, “
Determination of Work of Adhesion of Gelatin Hydrogels on a Glass Substrate
,”
Mater. Res. Express
,
5
(
4
), p.
045302
.
22.
Fillipov
,
A. E.
,
Klafter
,
J.
, and
Uriah
,
M.
,
2004
, “
Friction Through Dynamical Formation and Rupture of Molecular Bonds
,”
Phys. Rev. Lett.
,
92
(
13
), p.
132004
.
23.
Singh
,
A. K.
, and
Juvekar
,
V. A.
,
2014
, “
Steady Relaxation of a Soft and Hard Solid Interface
,” Cornell University library, Ithaca, NY, eprint
arXiv:1412.0099
.https://arxiv.org/abs/1412.0099
24.
Maugis
,
D.
,
2000
,
Contact, Adhesion and Rupture of Elastic Solids
,
Springer
, Berlin, Germany.
25.
Gent
,
A. N.
,
Suh
,
J. B.
, and
Kelly
,
S. G.
, III
,
2007
, “
Mechanics of Rubber Shear Springs
,”
Int. J. Non-Linear Mech.
,
42
(
2
), pp.
241
279
.
26.
Vajpayee
,
S.
,
Long
,
R.
,
Shen
,
L. L.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2009
, “
Effect of Rate on Adhesion and Static Friction of a Film-Terminated Fibrillar Interface
,”
Langmuir
,
25
(
5
), pp.
2765
2771
.
27.
Singh
,
A. K.
,
Bai
,
Y.
,
Jagota
,
A.
, and
Hui
,
C. H. Y.
,
2012
, “
Adhesion of Microchannel Based Complementary Surfaces
,”
Langmuir
,
28
(
9
), pp.
4213
4222
.
You do not currently have access to this content.