The mechanical and tribological performances of 316 L stainless steel subjected to different cold rolling (CR) strains were investigated. The microhardness and strength of 316 L stainless steel were improved attributed to the formation of high-density defects, such as dislocations and parallel lamellar structures. Furthermore, the tribology tests were conducted under dry sliding at room temperature. With the increase in rolling strain, the wear rate of 316 L stainless steel gradually decreased due to the improvements in microhardness and strength. For the as-received specimen, the strong adhesive wear leads to the maximum wear rate compared with the cold rolled specimens. Under higher rolling strain conditions, the grain boundary embrittlement caused by oxygen reaction leads to the formation of oxidative abrasive under dry sliding conditions, and then the oxidative abrasive could serve as the third body at the siding interface. Consequently, there is a transition phase where the wear mechanism gradually shifts from adhesive to abrasive wear.

References

References
1.
Estrin
,
Y.
, and
Vinogradov
,
A.
,
2013
, “
Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science
,”
Acta. Mater
,
61
(
3
), pp.
782
817
.
2.
Odnobokova
,
M.
,
Belyakov
,
A.
, and
Kaibyshev
,
R.
,
2016
, “
Effect of Severe Cold or Warm Deformation on Microstructure Evolution and Tensile Behavior of a 316 L Stainless Steel
,”
Adv. Eng. Mater
,
17
(
12
), pp.
1812
1820
.
3.
She
,
D.
,
Yue
,
W.
,
Fu
,
Z.
,
Gu
,
Y.
,
Wang
,
C.
, and
Liu
,
J.
,
2013
, “
The Effect of Nitriding Temperature on Hardness and Microstructure of Die Steel Pre-Treated by Ultrasonic Cold Forging Technology
,”
Mater. Des
,
49
, pp.
392
399
.
4.
Kwok
,
C. T.
,
Lo
,
K. H.
,
Cheng
,
F. T.
, and
Man
,
H. C.
,
2003
, “
Effect of Processing Conditions on the Corrosion Performance of Laser Surface-Melted AISI 440C Martensitic Stainless Steel
,”
Surf. Coat. Technol.
,
166
(
2–3
), pp.
221
230
.
5.
Cheng
,
Z.
,
Li
,
C.
,
Dong
,
H.
, and
Bell
,
T.
,
2005
, “
Low Temperature Plasma Nitrocarburising of AISI 316 Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
191
(
2–3
), pp.
195
200
.
6.
Liu
,
X. C.
,
Zhang
,
H. W.
, and
Lu
,
K.
,
2015
, “
Formation of Nano-Laminated Structure in Nickel by Means of Surface Mechanical Grinding Treatment
,”
Acta. Mater
,
96
, pp.
24
36
.
7.
Lu
,
K.
, and
Lu
,
J.
,
1999
, “
Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept Behind a New Approach
,”
J. Mater. Sci. Technol.
,
15
(
3
), pp.
193
197
http://www.jmst.org/EN/Y1999/V15/I03/193.
8.
Dalmau
,
A.
,
Rmili
,
W.
,
Joly
,
D.
, and
Igual-Muñoz
,
A.
,
2014
, “
Tribological Behavior of New Martensitic Stainless Steels Using Scratch and Dry Wear Test
,”
Tribol. Lett.
,
56
(
3
), pp.
517
529
.
9.
Wang
,
Y.
,
Yue
,
W.
,
She
,
D.
,
Fu
,
Z.
,
Huang
,
H.
, and
Liu
,
J.
,
2014
, “
Effects of Surface Nanocrystallization on Tribological Properties of 316 L Stainless Steel Under Modtc/ZDDP Lubrications
,”
Tribol. Int.
,
79
(
11
), pp.
42
51
.
10.
Lancaster
,
J. K.
,
1990
, “
A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication and Wear
,”
Tribol. Int.
,
23
(
6
), pp.
371
389
.
11.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen
,”
Carbon
,
59
(
8
), pp.
167
175
.
12.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces
,”
Carbon
,
54
(
54
), pp.
454
459
.
13.
Pandkar
,
A. S.
,
Arakere
,
N.
, and
Subhash
,
G.
,
2015
, “
Ratcheting-Based Microstructure-Sensitive Modeling of the Cyclic Hardening Response of Case-Hardened Bearing Steels Subject to Rolling Contact Fatigue
,”
Int. J. Fatigue
,
73
, pp.
119
131
.
14.
Pandkar
,
A. S.
,
Arakere
,
N.
, and
Subhash
,
G.
,
2014
, “
Microstructure-Sensitive Accumulation of Plastic Strain Due to Ratcheting in Bearing Steels Subject to Rolling Contact Fatigue
,”
Int. J. Fatigue
,
63
(
6
), pp.
191
202
.
15.
Quinn
,
T. F. J.
,
Sullivan
,
J. L.
, and
Rowson
,
D. M.
,
1984
, “
Origins and Development of Oxidational Wear at Low Ambient Temperatures
,”
Wear
,
94
(
2
), pp.
175
191
.
16.
Straffelini
,
G.
,
Trabucco
,
D.
, and
Molinari
,
A.
,
2001
, “
Oxidative Wear of Heat-Treated Steels
,”
Wear
,
250
(
1–12
), pp.
485
91
.
17.
Miura-Fujiwara
,
E.
,
Okumura
,
T.
, and
Yamasaki
,
T.
,
2015
, “
Frictional and Wear Behavior of Commercially Pure Ti, Ti-6Al-7Nb, and SUS316 L Stainless Steel in Artificial Saliva at 310 K
,”
Mater. Trans
,
56
(
10
), pp.
1648
1657
.
18.
Yao
,
B.
,
Han
,
Z.
, and
Lu
,
K.
,
2012
, “
Correlation Between Wear Resistance and Subsurface Recrystallization Structure in Copper
,”
Wear
,
S294–295
(
3
), pp.
438
445
.
19.
Chen
,
X.
,
Han
,
Z.
, and
Lu
,
K.
,
2014
, “
Wear Mechanism Transition Dominated by Subsurface Recrystallization Structure in Cu–Al Alloys
,”
Wear
,
320
(
1–2
), pp.
41
50
.
20.
So
,
H.
,
Chen
,
H.
, and
Chen
,
L.
,
2008
, “
Extrusion Wear and Transition of Wear Mechanisms of Steel
,”
Wear
,
265
(
7–8
), pp.
1142
1148
.
21.
Lim
,
S. C.
, and
Ashby
,
M. F.
,
1987
, “
Wear-Mechanism Maps
,”
Acta. Metall.
,
35
(
1
), pp.
1
24
.
22.
Sullivan
,
J. L.
,
Quinn
,
T. F. J.
, and
Rowson
,
D. M.
,
1980
, “
Developments in the Oxidational Theory of Mild Wear
,”
Tribol. Int.
,
13
(
4
), pp.
153
158
.
23.
Quinn
,
T. F. J.
,
2002
, “
The Oxidational Wear of Low Alloy Steels
,”
Tribol. Int.
,
35
(
11
), pp.
691
715
.
24.
Abouei
,
V.
,
Saghafian
,
H.
, and
Kheirandish
,
S.
,
2007
, “
Effect of Microstructure on the Oxidative Wear Behavior of Plain Carbon Steel
,”
Wear
,
262
(
9–10
), pp.
1225
1231
.
25.
Wang
,
S.
,
Wang
,
L.
,
Zhao
,
Y.
,
Sun
,
Y.
, and
Yang
,
Z.
,
2013
, “
Mild-to-Severe Wear Transition and Transition Region of Oxidative Wear in Steels
,”
Wear
,
306
(
1–2
), pp.
311
320
.
26.
Fazlalipour
,
F.
,
Shokuhfar
,
A.
,
Nushari
,
M. N.
, and
Shakib
,
N.
,
2012
, “
Effect of Nitro-Carburizing Treatment on Wear Mechanism and Friction of Steel/WC-Co Sliding Couple
,”
ASME J. Tribol.
,
134
(
1
), pp.
97
104
.
27.
Pan
,
R.
,
Ren
,
R.
,
Zhao
,
X.
, and
Chen
,
C.
,
2018
, “
Influence of Microstructure Evolution During the Sliding Wear of CL65 Steel
,”
Wear
,
400–401
, pp.
169
176
.
28.
Persson
,
B. N. J.
,
Sivebaek
,
I. M.
,
Samoilov
,
V. N.
,
Zhao
,
K.
,
Volokitin
,
A. I.
, and
Zhang
,
Z. Y.
,
2008
, “
On the Origin of Amonton's Friction Law
,”
J. Phys. Condens. Mat.
,
20
(39), p.
395006
.
29.
Archard
,
J. F.
,
2004
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
30.
Qin
,
W.
,
Yue
,
W.
, and
Wang
,
C.
,
2018
, “
Controllable Wear Behaviors of Silicon Nitride Sliding Against Sintered Polycrystalline Diamond Via Altering Humidity
,”
J. Am. Ceram. Soc.
,
101
(
6
), pp.
2506
2515
.
31.
Li
,
J.
,
Yue
,
W.
,
Qin
,
W.
,
Mao
,
Q.
,
Gao
,
B.
, and
Li
,
Y.
,
2017
, “
Effect of Quenching Processes on Microstructures and Tribological Behaviors of Polycrystalline Diamond Compact (PCD/WC-Co) in Annealing Treatment
,”
Diamond Relat. Mater.
,
79
, pp.
79
87
.
32.
Li
,
Y.
,
Tao
,
N.
, and
Lu
,
K.
,
2008
, “
Microstructural Evolution and Nanostructure Formation in Copper During Dynamic Plastic Deformation at Cryogenic Temperatures
,”
Acta. Mater.
,
56
(
2
), pp.
230
241
.
33.
Yan
,
F.
,
Liu
,
G.
,
Tao
,
N.
, and
Lu
,
K.
,
2012
, “
Strength and Ductility of 316 L Austenitic Stainless Steel Strengthened by Nano-Scale Twin Bundles
,”
Acta. Mater.
,
60
(
3
), pp.
1059
1071
.
34.
Tsakiris
,
V.
, and
Edmonds
,
D. V.
,
1999
, “
Martensite and Deformation Twinning in Austenitic Steels
,”
Mater. Sci. Eng. A
,
S273–275
(
99
), pp.
430
436
.
35.
Eskandari
,
M.
,
Najafizadeh
,
A.
, and
Kermanpur
,
A.
,
2009
, “
Effect of Strain-Induced Martensite on the Formation of Nanocrystalline 316 L Stainless Steel After Cold Rolling and Annealing
,”
Mater. Sci. Eng. A.
,
519
(
1–2
), pp.
46
50
.
36.
Talonen
,
J.
,
2007
, “
Effect of Strain-Induced Α'-Martensite Transformation on Mechanical Properties of Metastable Austenitic Stainless Steels
,”
Appl. Surf. Sci.
,
123
(
123
), pp.
339
342
http://urn.fi/urn:nbn:fi:tkk-009284.
37.
Talonen
,
J.
,
Hänninen
,
H.
,
Nenonen
,
P.
, and
Pape
,
G.
,
2005
, “
Effect of Strain Rate on the Strain-Induced Γ, →α′-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels
,”
Metall. Mater. Trans. A
,
36
(
2
), pp.
421
432
.
38.
Li
,
J. S.
,
Cao
,
Y.
,
Gao
,
B.
,
Li
,
Y. S.
, and
Zhu
,
Y. T.
,
2018
, “
Superior Strength and Ductility of 316l Stainless Steel With Heterogeneous Lamella Structure
,”
J. Mater. Sci
,
53
(
14
), pp.
10442
10456
.
39.
Krizan
,
D.
, and
Cooman
,
B. C. D.
,
2008
, “
Analysis of the Strain-Induced Martensitic Transformation of Retained Austenite in Cold Rolled Micro-Alloyed TRIP Steel
,”
Steel. Res. Int.
,
79
(
7
), pp.
513
522
.
40.
Spencer
,
K.
,
Embury
,
J. D.
,
Conlon
,
K. T.
,
Véron
,
M.
, and
Bréchet
,
Y.
,
2004
, “
Strengthening Via the Formation of Strain-Induced Martensite in Stainless Steels
,”
Mater. Sci. Eng. A.
,
S387–389
(
6
), pp.
873
881
.
41.
Sun
,
H.
,
Shi
,
Y.
,
Zhang
,
M.
, and
Lu
,
K.
,
2007
, “
Plastic Strain-Induced Grain Refinement in the Nanometer Scale in a Mg Alloy
,”
Acta Mater.
,
55
(
3
), pp.
975
982
.
42.
Vojteh
,
L.
,
Matjaž
,
G.
, and
Peter
,
K.
,
2014
, “
Strengthening Via the Formation of Strain-Induced Martensite and the Effects of Laser Marking on the Microstructure of Austenitic Stainless Steel
,”
Metall. Mater. Trans. A
,
45
(
6
), pp.
2819
2826
.
43.
Grosdidier
,
T.
,
Zou
,
J. X.
,
Stein
,
N.
,
Boulanger
,
C.
,
Hao
,
S. Z.
, and
Dong
,
C.
,
2008
, “
Texture Modification, Grain Refinement and Improved Hardness/Corrosion Balance of a Feal Alloy by Pulsed Electron Beam Surface Treatment in the “Heating Mode”
,”
Scr. Mater.
,
58
(
12
), pp.
1058
1061
.
44.
Li
,
J. S.
,
Gao
,
W. D.
,
Cao
,
Y.
,
Huang
,
Z. W.
,
Gao
,
B.
,
Mao
,
Q. Z.
, and
Li
,
Y. S.
,
2018
, “
Microstructures and Mechanical Properties of a Gradient Nanostructured 316 L Stainless Steel Processed by Rotationally Accelerated Shot Peening
,”
Adv. Eng. Mater.
(epub).
45.
Bobylev
,
S. V.
, and
Ovid'Ko
,
I. A.
,
2015
, “
Anomalous Multiplication of Lattice Dislocations at Grain Boundaries in Nanocrystalline Solids
,”
J. Phys. D. Appl. Phys.
,
48
(
3
), p.
035302
.
46.
Valiev
,
R. Z.
,
Islamgaliev
,
R. K.
, and
Alexandrov
,
I. V.
,
1999
, “
Bulk Nanostructured Materials From Severe Plastic Deformation
,”
Prog. Mater. Sci.
,
45
(
2
), pp.
103
189
.
47.
Zehetbauer
,
M.
,
Grössinger
,
R.
,
Krenn
,
H.
,
Krystian
,
M.
,
Pippan
,
R.
,
Rogl
,
P.
,
Waitz
,
T.
, and
Würschum
,
R.
,
2010
, “
Bulk Nanostructured Functional Materials by Severe Plastic Deformation
,”
Adv. Eng. Mater.
,
12
(
8
), pp.
692
700
.
48.
Miura
,
H.
,
Kobayashi
,
M.
,
Todaka
,
Y.
,
Watanabe
,
C.
,
Aoyagi
,
Y.
,
Sugiura
,
N.
, and
Yoshinaga
,
N.
,
2017
, “
Heterogeneous Nanostructure Developed in Heavily Cold-Rolled Stainless Steels and the Specific Mechanical Properties
,”
Scr. Mater.
,
133
, pp.
33
36
.
49.
Valiev
,
R.
,
2004
, “
Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties
,”
Nat. Mater.
,
3
(
8
), pp.
511–516
.
50.
Chaise
,
T.
, and
Nélias
,
D.
,
2011
, “
Contact Pressure and Residual Strain in 3D Elasto-Plastic Rolling Contact for a Circular or Elliptical Point Contact
,”
ASME J. Tribol.
,
133
(
4
), p.
041402
.
51.
Martinez-Perez
,
M. L.
,
Borlado
,
C. R.
,
Mompean
,
F. J.
,
Garcia-Hernandez
,
M.
,
Gil-Sevillano
,
J.
,
Ruiz-Hervias
,
J.
,
Atienza
,
J. M.
,
Elices
,
M.
,
Peng
,
R.
, and
Daymond
,
M. R.
,
2005
, “
Measurement and Modelling of Residual Stresses in Straightened Commercial Eutectoid Steel Rods
,”
Acta Mater.
,
53
(
16
), pp.
4415
4425
.
52.
Hirsch
,
T. K.
,
Rocha
,
A. D. S.
, and
Nunes
,
R. M.
,
2014
, “
Characterization of Local Residual Stress Inhomogeneities in Combined Wire Drawing Processes of AISI 1045 Steel Bars
,”
Int. J. Adv. Manuf. Technol.
,
70
(
1–4
), pp.
661
668
.
53.
Bahadur
,
A.
,
Kumar
,
B. R.
, and
Chowdhury
,
S. G.
,
2013
, “
Evaluation of Changes in X-Ray Elastic Constants and Residual Stress as a Function of Cold Rolling of Austenitic Steels
,”
Met. Sci. J.
,
20
(
3
), pp.
387
392
.
54.
Mairey
,
D.
,
Sprauel
,
J. M.
,
Chuard
,
M.
, and
Mignot
,
J.
,
1985
, “
Study of Residual Stresses Induced by Sliding Wear
,”
ASME J. Tribol.
,
107
(
2
), pp.
195
199
.
55.
Mao
,
M. D.
, and
Zhang
,
X. C.
,
2017
, “
Stability of Residual Stresses in Ultrasonic Surface Deep Rolling Treated Ti-6Al-4V Alloy Under Cyclic Loading
,”
Appl. Mech. Mater.
,
853
, pp.
173
177
.
56.
Silva
,
P. M. D. O.
,
Abreu
,
H. F. G. D.
,
Albuquerque
,
V. H. C. D.
,
Neto
,
P. D. L.
, and
Tavares
,
J. M. R. S.
,
2011
, “
Cold Deformation Effect on the Microstructures and Mechanical Properties of AISI 301 LN and 316 L Stainless Steels
,”
Mater. Des.
,
32
(
2
), pp.
605
614
.
You do not currently have access to this content.