The in situ method of making zinc-aluminum composites wherein TiC has been introduced has been investigated in the present paper for its microstructural, physical, and dry sliding wear behavior and compared with the base alloy. In the present study, ZA-27 alloy reinforced with 5 and 10 vol % TiC was taken into consideration. The results indicate that the wear rate and coefficient of friction of composites were lower than that of base alloy. The material loss in terms of both wear volume loss and wear rate increases with increase in load and sliding distance, respectively, while coefficient of friction follows a reverse trend with increase in load. Better performance was obtained for 5% TiC reinforcement than with 10% probably due to agglomeration of particles resulting in nonuniform dispersion. Worn surfaces were analyzed by scanning electron microscopy (SEM) analysis.

References

References
1.
Aziz
,
M. A.
,
Mahmoud
,
T.
,
Zaki
,
Z. I.
, and
Gaafer
,
A. M.
,
2006
, “
Heat Treatment and Wear Characteristics of Al2O3 and TiC Particulate Reinforced AA6063 Al Alloy Hybrid Composites
,”
ASME J. Tribol.
,
128
(
4
), pp.
891
894
.
2.
Yadav
,
B. N.
,
Verma
,
G.
,
Muchhala
,
D.
,
Kumar
,
R.
, and
Mondal
,
D. P.
,
2018
, “
Effect of MWCNTs Addition on the Wear and Compressive Deformation Behavior of LM13-SiC-MWCNTs Hybrid Composites
,”
Tribol. Int.
,
128
, pp.
21
33
.
3.
Kumar
,
A.
,
Gautam
,
R. K.
, and
Tyagi
,
R.
,
2016
, “
Dry Sliding Wear Characteristics of In Situ Synthesized Al-TiC Composites
,”
Compos. Interfaces
,
23
(
6
), pp.
469
480
.
4.
Jha
,
P.
,
Gautam
,
R. K.
,
Tyagi
,
R.
, and
Kumar
,
D.
,
2016
, “
Sliding Wear Behavior of TiC-Reinforced Cu-4 wt% Ni Matrix Composites
,”
J. Mater. Eng. Perform.
,
25
(
10
), pp.
4210
4218
.
5.
Sharma
,
S. C.
,
Girish
,
B. M.
,
Kamath
,
R.
, and
Satish
,
B. M.
,
1997
, “
Effect of SiC Particle Reinforcement on the Unlubricated Sliding Wear Behaviour of ZA-27 Alloy Composites
,”
Wear
,
213
(
1–2
), pp.
33
40
.
6.
Gangwar
,
S.
,
Patnaik
,
A.
, and
Bhat
,
I. K.
,
2018
, “
Tribological and Thermomechanical Analysis of CaO (Quicklime) Particulates Filled ZA-27 Alloy Composites for Bearing Application
,”
Proc. Inst. Mech. Eng., Part L
,
232
(
1
), pp.
20
34
.
7.
Miroslav
,
B.
,
Mitrović
,
S.
,
Zivic
,
F.
, and
Bobić
,
I.
,
2010
, “
Wear Behavior of Composites Based on ZA-27 Alloy Reinforced by Al2O3 Particles Under Dry Sliding Condition
,”
Tribol. Lett.
,
38
(
3
), pp.
337
346
.
8.
Sharma
,
S. C.
,
Girish
,
B. M.
,
Somashekar
,
D. R.
,
Satish
,
B. M.
, and
Kamath
,
R.
,
1999
, “
Sliding Wear Behaviour of Zircon Particles Reinforced ZA-27 Alloy Composite Materials
,”
Wear
,
224
(
1
), pp.
89
94
.
9.
Yang
,
Z. R.
,
Huan
,
H. X.
,
Jiang, C. F., Li
,
W. M.
,
Liu
,
X. R.
, and
Lyu
,
S.
,
2017
, “
Evaluation on Dry Sliding Wear Behavior of (TiB+ TiC)/Ti-6Al-4V Matrix Composite
,”
Int. J. Prec. Eng. Manuf.
,
18
(
8
), pp.
1139
1146
.
10.
Gong
,
J.
,
Miao
,
H.
, and
Zhao
,
Z.
,
2002
, “
Effect of TiC-Particle Size on Sliding Wear of TiC Particulate Reinforced Alumina Composites
,”
Mater. Lett.
,
53
(
4–5
), pp.
258
261
.
11.
Rao
,
V. R.
,
Ramanaiah
,
N.
, and
Sarcar
,
M. M. M.
,
2016
, “
Dry Sliding Wear Behavior of TiC-AA7075 Metal Matrix Composites
,”
Int. J. Appl. Sci. Eng. Res.
,
14
(
1
), pp.
27
37
.https://www.cyut.edu.tw/~ijase/2016/14(1)/3_039016.pdf
12.
Prasad
,
B. K.
,
Jha
,
A. K.
,
Modi
,
O. P.
, Das, S. and
Yegneswaran
,
A. H.
,
1995
, “
Abrasive Wear Characteristics of Zn–37.2 Al–2.5 Cu–0.2 Mg Alloy Dispersed With Silicon Carbide Particles
,”
Mater. Trans. JIM
,
36
(
8
), pp.
1048
1057
.
13.
Prasad
,
B. K.
,
Das
,
S.
,
Jha
,
A. K.
,
Modi
,
O. P.
,
Dasgupta
,
R.
, and
Yegneswaran
,
A. H.
,
1997
, “
Factors Controlling the Abrasive Wear Response of a Zinc-Based Alloy Silicon Carbide Particle Composite
,”
Composites, Part A
,
28
(
4
), pp.
301
308
.
14.
Prasad
,
B. K.
,
Das
,
S.
,
Dasgupta
,
R.
,
Modi
,
O. P.
,
Jha
,
A. K.
, and
Yegneswaran
,
A. H.
,
1998
, “
Two-Body Abrasion Characteristics of a Zinc-Based Alloy: Effects of SiC Particle Reinforcement and Related Factors
,”
J. Mater. Sci. Lett.
,
17
(
11
), pp.
901
903
.
15.
Modi
,
O. P.
,
Yadav
,
R. P.
,
Mondal
,
D. P.
,
Dasgupta
,
R.
,
Das
,
S.
, and
Yegneswaran
,
A. H.
,
2001
, “
Abrasive Wear Behaviour of Zinc-Aluminum Alloy-10% Al2O3 Composite Through Factorial Design of Experiment
,”
J. Mater. Sci.
,
36
(
7
), pp.
1601
1607
.
16.
Prasad
,
B. K.
,
Modi
,
O. P.
, and
Khaira
,
H. K.
,
2004
, “
High-Stress Abrasive Wear Behaviour of a Zinc-Based Alloy and Its Composite Compared With a Cast Iron Under Varying Track Radius and Load Conditions
,”
Mater. Sci. Eng. A
,
381
(
1–2
), pp.
343
354
.
17.
Prasad
,
B. K.
,
2002
, “
Abrasive Wear Characteristics of a Zinc-Based Alloy and Zinc-Alloy/SiC Composite
,”
Wear
,
252
(
3–4
), pp.
250
263
.
18.
Modi
,
O. P.
,
Yadav
,
R. P.
,
Prasad
,
B. K.
,
Jha
,
A. K.
,
Das
,
S.
, and
Yegneswaran
,
A. H.
,
2001
, “
Three-Body Abrasion of a Cast Zinc–Aluminum Alloy: Influence of Al2O3 Dispersoid and Abrasive Medium
,”
Wear
,
249
(
9
), pp.
792
799
.
19.
Casto
,
S. L.
,
Valvo
,
E. L.
,
Lucchini
,
E.
,
Maschio
,
S.
, and
Ruisi
,
V. F.
,
1997
, “
Wear Rates and Wear Mechanisms of Alumina-Based Tools Cutting Steel at a Low Cutting Speed
,”
Wear
,
208
(
1–2
), pp.
67
72
.
20.
Ramesh
,
C. S.
,
Pramod
,
S.
, and
Keshavamurthy
,
R.
,
2011
, “
A Study on Microstructure and Mechanical Properties of Al 6061–TiB2 In-Situ Composites
,”
Mater. Sci. Eng. A
,
528
(
12
), pp.
4125
4132
.
21.
Barnhurst
,
R. J.
, and
Farge
,
J. C.
,
1988
, “
A Study of the Bearing Characteristics of Zinc-Aluminum (ZA) Alloys
,”
Can. Metall. Q.
,
27
(
3
), pp.
225
233
.
22.
Delneuville
,
P.
,
1985
, “
Tribological Behaviour of ZnAl Alloys (ZA27) Compared With Bronze When Used as a Bearing Material With High Load and at Very Low Speed
,”
Wear
,
105
(
4
), pp.
283
292
.
23.
Kubel
,
E. J.
, Jr.
,
1987
, “
Expanding Horizons for ZA Alloys
,”
Adv. Mater. Processes
,
132
(
1
), pp.
51
57
.
24.
Altorfer
,
K. J.
,
1982
, “
Zinc-Alloys Compete With Bronze in Bearings and Bushings
,”
Met. Prog.
,
122
(
6
), pp.
29
31
.
25.
Barnhurst
,
R. J.
,
1988
, “
Guidelines for Designing Zinc Alloy Bearings—A Technical Manual
,”
SAE Paper No.
880289
.https://www.jstor.org/stable/44468699
26.
Seah
,
K. H. W.
,
Sharma
,
S. C.
,
Girish
,
B. M.
, and
Lim
,
S. C.
,
1996
, “
Wear Characteristics of As-Cast ZA-27/Graphite Particulate Composites
,”
Mater. Des.
,
17
(
2
), pp.
63
67
.
27.
Mondal
,
D. P.
,
Das
,
S.
, and
Rajput
,
V.
,
2005
, “
Effect of Zinc Concentration and Experimental Parameters on High Stress Abrasive Wear Behaviour of Al–Zn Alloys: A Factorial Design Approach
,”
Mater. Sci. Eng. A
,
406
(
1–2
), pp.
24
33
.
28.
Prabu
,
S. B.
,
Karunamoorthy
,
L.
,
Kathiresan
,
S.
, and
Mohan
,
B.
,
2006
, “
Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite
,”
J. Mater. Process. Technol.
,
171
(
2
), pp.
268
273
.
29.
Hassan
,
A. M.
,
Alrashdan
,
A.
,
Hayajneh
,
M. T.
, and
Mayyas
,
A. T.
,
2009
, “
Wear Behavior of Al–Mg–Cu–Based Composites Containing SiC Particles
,”
Tribol. Int.
,
42
(
8
), pp.
1230
1238
.
30.
Zhang
,
Q.
,
Wu
,
G.
, and
Jiang
,
L.
,
2008
, “
Tensile Deformation Behavior of a Sub-Micrometer Al2O3/6061Al Composite
,”
Mater. Sci. Eng. A
,
483
, pp.
281
284
.
31.
Nakata
,
H.
,
Choh
,
T.
, and
Kanetake
,
N.
,
1995
, “
Fabrication and Mechanical Properties of In Situ Formed Carbide Particulate Reinforced Aluminum Composite
,”
J. Mater. Sci.
,
30
(
7
), pp.
1719
1727
.
32.
Pradeep Kumar
,
G. S.
,
Keshavamurthy
,
R.
,
Ramesh
,
C. S.
, and
Channabasappa
,
B. H.
,
2015
, “
Tribological Characteristics of Al6061-TiC Composite Synthesized by In Situ Technique
,”
Proc. Appl. Mech. Mater.
,
787
, pp.
653
657
.
33.
Tjong
,
S. C.
, and
Ma
,
Z.
,
2000
, “
Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites
,”
Mater. Sci. Eng.: R: Rep.
,
29
(
3–4
), pp.
49
113
.
34.
Rahul
,
M.
,
Keshavamurthy
,
R.
,
Koppad
,
P.
, and
Prakash
,
C.
,
2015
, “
Mechanical Characteristics of Copper–TiB2 Composite Synthesized by In Situ Reaction
,”
Int. J. Appl. Eng. Res.
,
10
(
55
), pp.
3803
3806
.https://www.researchgate.net/publication/279455903_Mechanical_characteristics_of_Copper-TiB_2_composite_synthesised_by_in-situ_reaction
35.
Kumar
,
G. S. P.
,
Koppad
,
P. G.
,
Keshavamurthy
,
R.
, and
Alipour
,
M.
,
2017
, “
Microstructure and Mechanical Behaviour of In Situ Fabricated AA6061–TiC Metal Matrix Composites
,”
Arch. Civ. Mech. Eng.
,
17
(
3
), pp.
535
544
.
36.
Rathod
,
S.
,
Modi
,
O.
,
Prasad
,
B. K.
,
Chrysanthou
,
A.
,
Vallauri
,
D.
,
Deshmukh
,
V. P.
, and
Shah
,
A. K.
,
2009
, “
Cast In Situ Cu–TiC Composites: Synthesis by SHS Route and Characterization
,”
Mater. Sci. Eng. A
,
502
(
1–2
), pp.
91
98
.
37.
Tyagi
,
R.
,
2005
, “
Synthesis and Tribological Characterization of In Situ Cast Al–TiC Composites
,”
Wear
,
259
(
1–6
), pp.
569
576
.
You do not currently have access to this content.