Inconel 100 (IN100) aerospace superalloy is used in manufacturing aero-engine components that operate at intermediate temperatures. It is considered to be a hard-to-cut material. Chipping of the tool edge is one of the major failure mechanisms of ceramic tools in finish cutting of superalloys, which causes a sudden breakage of the cutting edge during machining. Cutting temperature significantly depends on cutting speed. Varying the cutting speed will affect the frictional action during the machining operations. However, proper selection of the cutting variables, especially the cutting speed, can prevent chipping occurrence. In this work, the influence of controlling the cutting speed on the chipping formation in dry finish turning of IN100 aerospace superalloy using SiAlON ceramic tool has been investigated. Scanning electron microscope (SEM)/energy dispersing spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and three-dimensional wear measurements were used to make the investigations of the worn tool edges. It was found that variations of the cutting speeds in a certain range resulted in the generation of different lubricious and protective tribo-films. The presence of these tribo-films at the cutting region proved essential to prevent chipping of the cutting tool edge and to improve its wear resistance during finish turning of age-hardened IN 100 using SiAlON ceramic tools. Chip compression ratio and calculated values of the coefficient of friction at the tool–chip interface confirmed these results.

References

References
1.
Byrne
,
G.
,
Dornfeld
,
D.
, and
Denkena
,
B.
,
2003
, “
Advancing Cutting Technology
,”
CIRP Ann.-Manuf. Technol.
,
52
(
2
), pp.
483
507
.
2.
Sreejith
,
P.
, and
Ngoi
,
B.
,
2000
, “
Dry Machining: Machining of the Future
,”
J. Mater. Process. Technol.
,
101
(
1–3
), pp.
287
291
.
3.
Dudzinski
,
D.
,
Devillez
,
A.
,
Moufki
,
A.
,
Larrouquère
,
D.
,
Zerrouki
,
V.
, and
Vigneau
,
J.
,
2004
, “
A Review of Developments Towards Dry and High Speed Machining of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
439
456
.
4.
Ezugwu
,
E.
,
Bonney
,
J.
, and
Yamane
,
Y.
,
2003
, “
An Overview of the Machinability of Aeroengine Alloys
,”
J. Mater. Process. Technol.
,
134
(
2
), pp.
233
53
.
5.
Claudin
,
C.
,
Rech
,
J.
,
Grzesik
,
W.
, and
Zalisz
,
S.
,
2008
, “
Characterization of the Frictional Properties of Various Coatings at the Tool/Chip/Workpiece Interfaces in Dry Machining of AISI 4140 Steel
,”
Int. J. Mater. Forming
,
1
(
Suppl. 1
), pp.
511
4
.
6.
Kurt
,
A.
,
Yalçin
,
B.
, and
Yilmaz
,
N.
,
2015
, “
The Cutting Tool Stresses in Finish Turning of Hardened Steel With Mixed Ceramic Tool
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
315
325
.
7.
Lee
,
H.
, and
Hou
,
W.
,
2012
, “
Development of Fine-Grained Structure and the Mechanical Properties of Nickel-Based Superalloy 718
,”
Mater. Sci. Eng. A
,
555
, pp.
13
20
.
8.
Choudhury
,
I.
, and
El-Baradie
,
M.
,
1998
, “
Machinability of Nickel-Base Super Alloys: A General Review
,”
J. Mater. Process. Technol.
,
77
(
1–3
), pp.
278
284
.
9.
Brandt
,
G.
,
Gerendas
,
A.
, and
Mikus
,
M.
,
1990
, “
Wear Mechanisms of Ceramic Cutting Tools When Machining Ferrous and Non-Ferrous Alloys
,”
J. Eur. Ceram. Soc.
,
6
(
5
), pp.
273
290
.
10.
Obikawa
,
T.
, and
Yamaguchi
,
M.
,
2015
, “
Suppression of Notch Wear of a Whisker Reinforced Ceramic Tool in Air-Jet-Assisted High-Speed Machining of Inconel 718
,”
Precis. Eng.
,
39
, pp.
143
151
.
11.
Ezugwu
,
E.
,
2005
, “
Key Improvements in the Machining of Difficult-to-Cut Aerospace Superalloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1353
1367
.
12.
Thakur
,
D.
,
Ramamoorthy
,
B.
, and
Vijayaraghavan
,
L.
,
2012
, “
Effect of Cutting Parameters on the Degree of Work Hardening and Tool Life During High-Speed Machining of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
59
(
5–8
), pp.
483
489
.
13.
Khidhir
,
B.
, and
Mohamed
,
B.
,
2010
, “
Study of Cutting Speed on Surface Roughness and Chip Formation When Machining Nickel-Based Alloy
,”
J. Mech. Sci. Technol.
,
24
(
5
), pp.
1053
1059
.
14.
Axinte
,
D.
,
Andrews
,
P.
,
Li
,
W.
,
Gindy
,
N.
, and
Withers
,
P.
,
2006
, “
Turning of Advanced Ni Based Alloys Obtained Via Powder Metallurgy Route
,”
Ann. CIRP
,
55
(
1
), pp.
117
120
.
15.
Ozel
,
T.
,
Arisoy
,
Y.
, and
Guo
,
C.
,
2016
, “
Identification of Microstructural Model Parameters for 3D Finite Element Simulation of Machining Inconel 100 Alloy
,”
Procedia CIRP
,
46
, pp.
549
554
.
16.
Kikuchi
,
S.
,
Ando
,
S.
,
Futami
,
S.
, and
Kitamura
,
T.
,
1990
, “
Superelastic Deformation and Microstructure Evolution in PM iN-100 Superalloy
,”
J. Mater. Sci.
,
25
(
11
), pp.
4712
4716
.
17.
Vigneau
,
J.
,
Boulanger
,
J.
, and
Maitre
,
F.
,
1982
, “
Behavior of Ceramic Tools During the Machining of Nickel Base Alloys
,”
Ann. CIRP
,
31
(
1
), pp.
135
39
.
18.
Jack
,
D.
,
1986
, “
Ceramic Cutting Tool Materials
,”
Mater. Des.
,
7
(
5
), pp.
267
273
.
19.
Feia
,
Y.
,
Huang
,
C.
,
Liu
,
H.
, and
Zoub
,
B.
,
2014
, “
Mechanical Properties of Al2O3–TiC–TiN Ceramic Tool Materials
,”
Ceram. Int.
,
40
(
7
), pp.
10205
10209
.
20.
Kumar
,
A.
,
Durai
,
R. A.
, and
Sornakumar
,
T.
,
2006
, “
The Effect of Tool Wear on Tool Life of Alumina-Based Ceramic Cutting Tools While Machining Hardened Martensitic Stainless Steel
,”
J. Mater. Process. Technol.
,
173
(
2
), pp.
151
156
.
21.
El-Bestawi
,
M.
,
El-Wardany
,
T.
,
Yan
,
D.
, and
Tan
,
M.
,
1993
, “
Performance of Whisker-Reinforced Ceramic Tools in Milling Nickel-Based Superalloys
,”
Ann. CIRP
,
42
(
1
), pp.
99
102
.
22.
Bushlya
,
V.
,
Zhou
,
J.
,
Avdovic
,
P.
, and
Ståhl
,
J.
,
2013
, “
Wear Mechanisms of Silicon Carbide-Whisker-Reinforced Alumina (Al2O3–SiCw) Cutting Tools When High-Speed Machining Aged Alloy 718
,”
Int. J. Adv. Manuf. Technol.
,
68
(
5–8
), pp.
1083
1093
.
23.
Richards
,
N.
, and
Aspinwall
,
D.
,
1989
, “
Use of Ceramic Tools for Machining Nickel Based Alloys
,”
Int. J. Mach. Tools Manuf.
,
29
(
4
), pp.
575
588
.
24.
El Wardany
,
T.
, and
Elbestawi
,
M.
,
1997
, “
Prediction of Tool Failure Rate in Turning Hardened Steels
,”
Int. J. Adv. Manuf. Technol.
,
13
(
1
), pp.
1
16
.
25.
Gong
,
F.
,
Zhao
,
J.
, and
Pang
,
J.
,
2017
, “
Evolution of Cutting Forces and Tool Failure Mechanisms in Intermittent Turning of Hardened Steel With Ceramic Tool
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
1603
1613
.
26.
Lee
,
W.
,
Ratnam
,
M.
, and
Ahmad
,
Z.
,
2016
, “
In-Process Detection of Chipping in Ceramic Cutting Tools During Turning of Difficult-to-Cut Material Using Vision-Based Approach
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5–8
), pp.
1275
1290
.
27.
Wang
,
B.
,
Yin
,
W.
,
Wang
,
M.
,
Zheng
,
Y.
,
Li
,
X.
, and
Ma
,
Z.
,
2017
, “
Edge Chipping Mechanism and Failure Time Prediction on Carbide Cemented Tool During Drilling of CFRP/Ti Stack
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3015
3024
.
28.
Luo
,
S.
, and
Wang
,
Z.
,
2008
, “
Studies of Chipping Mechanisms for Dicing Silicon Wafers
,”
Int. J. Adv. Manuf. Technol.
,
35
(
11–12
), pp.
1206
1218
.
29.
Xiao
,
L.
,
Zeng
,
M.
,
Wen
,
D.
,
Wu
,
H.
, and
Si
,
B.
,
2006
, “
PCBN Tool Wear Mechanism in Interrupted Hard Turning SAE8822 Hardened Steel
,”
Key Eng. Mater.
,
315–316
, pp.
329
333
.
30.
Kong
,
X.
,
Yang
,
L.
,
Zhang
,
H.
,
Zhou
,
K.
, and
Wang
,
Y.
,
2015
, “
Cutting Performance and Coated Tool Wear Mechanisms in Laser-Assisted Milling K24 Nickel-Based Superalloy
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9–12
), pp.
2151
2163
.
31.
Li
,
H.
,
He
,
G.
,
Qin
,
X.
,
Wang
,
G.
,
Lu
,
C.
, and
Gui
,
L.
,
2014
, “
Tool Wear and Hole Quality Investigation in Dry Helical Milling of Ti-6Al-4V Alloy
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
), pp.
1511
1523
.
32.
Sun
,
F.
,
Qu
,
S.
,
Pan
,
Y.
,
Li
,
X.
, and
Yang
,
C.
,
2014
, “
Machining Performance of a Grooved Tool in Dry Machining Ti-6Al-4 V
,”
Int. J. Adv. Manuf. Technol.
,
73
(
5–8
), pp.
613
622
.
33.
Zou
,
B.
,
Zhou
,
H.
,
Huang
,
C.
,
Xu
,
K.
, and
Wang
,
J.
,
2015
, “
Tool Damage and Machined-Surface Quality Using Hot-Pressed Sintering Ti(C7N3)/WC/TaC Cermet Cutting Inserts for High-Speed Turning Stainless Steels
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
197
210
.
34.
Sun
,
F.
,
Qu
,
S. Y.
,
Pan
,
X.
,
Li
,
X.
, and
Li
,
F.
,
2015
, “
Effects of Cutting Parameters on Dry Machining Ti-6Al-4V Alloy With Ultra-Hard Tools
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
351
360
.
35.
Astakhov
,
V.
,
2006
,
Tribology in Metal Cutting
,
1st ed.
,
Elsevier
, New York.
36.
Fox-Rabinovich
,
G.
, and
Totten
,
G.
,
2010
,
Self-Organization During Friction: Advanced Surface-Engineered Materials and Systems Design
,
CRC Press
, London.
37.
Dosbaeva
,
G.
,
El-Hakim
,
M.
,
Shalaby
,
M.
,
Krzanowski
,
J.
, and
Veldhuis
,
S.
,
2015
, “
Cutting Temperature Effect on PCBN and CVD Coated Carbide Tools in Hard Turning of D2 Tool Steel
,”
Int. J. Refract. Met. Hard Mater.
,
50
, pp.
1
8
.
38.
Fox-Rabinovich
,
G.
,
Gershman
,
I.
,
El-Hakim
,
M.
,
Shalaby
,
M.
,
Krzanowski
,
J.
, and
Veldhuis
,
S.
,
2014
, “
Tribofilm Formation as a Result of Complex Interaction at the Tool/Chip Interface During Cutting
,”
Lubricants
,
2
(
3
), pp.
113
123
.
39.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn
,”
Wear
,
202
(
2
), pp.
142
148
.
40.
Shalaby
,
M.
,
El Hakim
,
M.
, and
Veldhuis
,
S.
,
2018
, “
A Thermal Model for Hard Precision Turning
,”
Int. J. Adv. Manuf. Technol.
(epub).
41.
Thakur
,
D.
,
Ramamoorthy
,
B.
, and
Vijayaraghavan
,
L.
,
2009
, “
Machinability Investigation of Inconel 718 in High-Speed Turning
,”
Int. J. Adv. Manuf. Technol.
,
45
(
5–6
), pp.
421
429
.
42.
Wright
,
P.
, and
Trent
,
E.
,
2000
,
Metal Cutting
,
4th ed.
,
Butterworth-Heinemann
,
Boston, MA
.
43.
Shalaby
,
M.
,
El Hakim
,
M.
,
Veldhuis
,
S.
, and
Dosbaeva
,
G.
,
2017
, “
An Investigation Into the Behavior of the Cutting Forces in Precision Turning
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
1605
1615
.
44.
Fox-Rabinovich
,
G.
,
Yamamoto
,
K.
,
Beake
,
D.
,
Gershman
,
S.
,
Kovalev
,
A.
, and
Veldhuis
,
S.
,
2012
, “
Hierarchical Adaptive Nanostructured PVD Coatings for Extreme Tribological Applications: The Quest for Nonequilibrium States and Emergent Behavior
,”
Sci. Technol. Adv. Mater.
,
13
(
4
), p.
043001
.
45.
Yuan
,
J.
,
Boyd
,
J.
,
Covelli
,
D.
,
Arif
,
T.
,
Fox-Rabinovich
,
G.
, and
Veldhuis
,
S.
,
2016
, “
Influence of Workpiece Material on Tool Wear Performance and Tribofilm Formation in Machining Hardened Steel
,”
Lubricants
,
4
(
2
), p.
4020010
.
46.
Pawade
,
R.
,
Joshi
,
S.
, and
Brahmankar
,
P.
,
2008
, “
Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-Speed Turned Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
15
28
.
47.
North
,
B.
,
1987
, “
Ceramic Cutting Tools
,”
Int. J. High Technol. Ceram.
,
3
(
2
), pp.
113
127
.
48.
Shalaby
,
M.
,
El Hakim
,
M.
, and
Veldhuis
,
S.
,
2017
, “
Effect of some machining variables on surface roughness parameters in precision turning
,”
Sixth International Conference on Virtual Machining Process Technology (VMPT)
, Montréal, QC, Canada, May 29–June 2.
49.
Coelho
,
R.
,
Silva
,
L.
,
Braghini
,
A.
, and
Bezerra
,
A.
,
2004
, “
Some Effects of Cutting Edge Preparation and Geometric Modifications When Turning INCONEL 718TM at High Cutting Speeds
,”
J. Mater. Process. Technol.
,
148
(
1
), pp.
147
153
.
50.
Ezugwu
,
E.
,
Wang
,
Z.
, and
Machado
,
A.
,
1999
, “
The Machinability of Nickel-Based Alloys: A Review
,”
J. Mater. Process. Technol.
,
86
(
1–3
), pp.
1
16
.
51.
Fox-Rabinovich
,
G.
,
Gershman
,
I.
,
Yamamoto
,
K.
,
Biksa
,
A.
,
Veldhuis
,
S.
,
Beake
,
B.
, and
Kovalev
,
I.
,
2010
, “
Self-Organization During Friction in Complex Surface Engineered Tribosystems
,”
Entropy
,
12
(
2
), pp.
275
288
.
52.
El-Hakim
,
M.
,
Abad
,
M.
,
Abdelhameed
,
M.
,
Shalaby
,
M.
, and
Veldhuis
,
S.
,
2011
, “
Wear Behavior of Some Cutting Tool Materials in Hard Turning of HSS
,”
Tribol. Int.
,
44
(
10
), pp.
1174
1181
.
53.
Renz
,
A.
,
Khader
,
I.
, and
Kailer
,
A.
,
2016
, “
Tribochemical Wear of Cutting-Tool Ceramics in Sliding Contact Against Nickel-Base Alloy
,”
J. Eur. Ceram. Soc.
,
36
(
3
), pp.
705
717
.
54.
Fox-Rabinovich
,
G.
,
Gershman
,
I.
,
Yamamoto
,
K.
,
Aguirre
,
M.
,
Covelli
,
D.
,
Arif
,
T.
,
Aramesh
,
M.
,
Shalaby
,
M.
, and
Veldhuis
,
S.
,
2017
, “
Surface/Interface Phenomena in Nanomultilayer Coating Under Severing Tribological Conditions
,”
Surf. Interface Analysis
,
49
(
7
), pp.
584
593
.
55.
Yuan
,
J.
,
Yamamoto
,
K.
,
Covelli
,
D.
,
Tauhiduzzaman
,
M.
,
Arif
,
T.
,
Gershman
,
I.
,
Veldhuis
,
S.
, and
Fox-Rabinovich
,
G.
,
2016
, “
Tribo-Films Control in Adaptive TiAlCrSiYN/TiAlCrN Multilayer PVD Coating by Accelerating the Initial Machining Conditions
,”
Surf. Coat. Technol.
,
294
, pp.
54
61
.
You do not currently have access to this content.