Acrylonitrile butadiene styrene (ABS) polymer is cost-effective and also possesses high toughness and resistance to corrosive chemicals. However, pure ABS does not show significant wear resistance and also it has a high friction coefficient. Incorporation of a solid lubricant and nanofiller in a polymer matrix improves its tribological properties significantly. The addition of solid lubricant makes it suitable for application where self-lubrication is desirable (sliding bearings, gears). This paper deals with the study of tribological behavior of ABS hybrid composites reinforced with nano zirconia and polytetrafluoroethylene (PTFE). ABS hybrid composites with varying proportions of nano zirconia and PTFE were prepared using melt blending. Dispersion of reinforcement in the polymer matrix has been studied with the help of transmission electron micrographs. Influence of reinforcements on the mechanical behavior is studied by tensile testing according to the ASTM standard. The tribological behavior of composites was determined in a pin-on-disk tribometer according to the ASTM G99 standard. Worn surfaces were analyzed using scanning electron microscope (SEM) in order to identify the different types of wear and various wear mechanisms. Transfer film formation was studied by analyzing the counterbody surface. A wear mechanism map has been developed, which helps in identifying various wear mechanisms involved under given loading conditions. The results reveal that the addition of PTFE reduces the wear rate and coefficient of friction (COF) significantly. Nano zirconia effectively transfers the load, thereby improving wear resistance, and the addition of PTFE results in continuous transfer film formation thereby reducing the COF. Also from the wear map, it has been identified that abrasion, adhesion, plowing, plastic deformation, melting, and delamination are the dominant wear mechanisms involved.

References

References
1.
Richard
,
S.
,
Rajadurai
,
J. S.
, and
Manikandan
,
V.
,
2016
, “
Influence of Particle Size and Particle Loading on Mechanical and Dielectric Properties of Biochar Particulate-Reinforced Polymer Nanocomposites
,”
Int. J. Polym. Anal. Charact.
,
21
(
6
), pp.
462
477
.
2.
Kang
,
X.
,
Zhang
,
W.
, and
Yang
,
C.
,
2016
, “
Mechanical Properties Study of Micro- and Nano-Hydroxyapatite Reinforced Ultrahigh Molecular Weight Polyethylene Composites
,”
J. Appl. Polymer Sci.
,
133
(
3
), pp. 1–9.
3.
Essabir
,
H.
,
Boujmal
,
R.
,
Bensalah
,
M. O.
,
Rodrigue
,
D.
,
Bouhfid
,
R.
, and
Qaiss
,
A. e. K.
,
2016
, “
Mechanical and Thermal Properties of Hybrid Composites: Oil-Palm Fiber/Clay Reinforced High Density Polyethylene
,”
Mech. Mater.
,
98
, pp.
36
43
.
4.
Bindu Sharmila
,
T. K.
,
Antony
,
J. V.
,
Jayakrishnan
,
M. P.
,
Sabura Beegum
,
P. M.
, and
Thachil
,
E. T.
,
2015
, “
Mechanical, Thermal and Dielectric Properties of Hybrid Composites of Epoxy and Reduced Graphene Oxide/Iron Oxide
,”
Mater. Des.
,
90
, pp.
66
75
.
5.
Richard
,
S.
,
Selwin Rajadurai
,
J.
, and
Manikandan
,
V.
,
2016
, “
Effects of Particle Loading and Particle Size on Tribological Properties of Biochar Particulate Reinforced Polymer Composites
,”
ASME J. Tribol.
,
139
(
1
), pp. 1–10.
6.
Lin
,
L.
, and
Schlarb
,
A. K.
,
2018
, “
The Roles of Rigid Particles on the Friction and Wear Behavior of Short Carbon Fiber Reinforced PBT Hybrid Materials in the Absence of Solid Lubricants
,”
Tribol. Int.
,
119
, pp.
404
410
.
7.
Zalaznik
,
M.
,
Kalin
,
M.
,
Novak
,
S.
, and
Jakša
,
G.
,
2016
, “
Effect of the Type, Size and Concentration of Solid Lubricants on the Tribological Properties of the Polymer PEEK
,”
Wear
,
364–365
, pp.
31
39
.
8.
You
,
Y.-L.
,
Li
,
D.-X.
,
Si
,
G.-J.
, and
Deng
,
X.
,
2014
, “
Investigation of the Influence of Solid Lubricants on the Tribological Properties of Polyamide 6 Nanocomposite
,”
Wear
,
311
(
1–2
), pp.
57
64
.
9.
Bijwe
,
J.
,
Sharma
,
S.
,
Sharma
,
M.
,
Parida
,
T.
, and
Trivedi
,
P.
,
2013
, “
Exploration of Potential of Solid Lubricants and Short Fibers in Polyetherketone (PEK) Composites
,”
Wear
,
301
(
1–2
), pp.
810
819
.
10.
Golchin
,
A.
,
Friedrich
,
K.
,
Noll
,
A.
, and
Prakash
,
B.
,
2015
, “
Tribological Behavior of Carbon-Filled PPS Composites in Water Lubricated Contacts
,”
Wear
,
328–329
, pp.
456
463
.
11.
Jia
,
Z.
,
Hao
,
C.
,
Yan
,
Y.
, and
Yang
,
Y.
,
2015
, “
Effects of Nanoscale Expanded Graphite on the Wear and Frictional Behaviors of Polyimide-Based Composites
,”
Wear
,
338–339
, pp.
282
287
.
12.
Basavaraj
,
E.
,
Ramaraj
,
B.
,
Joong-Hee
,
L.
, and
Siddaramaiah
,
2013
, “
Polyamide 6/Carbon Black/Molybdenum Disulphide Composites: Friction, Wear and Morphological Characteristics
,”
Mater. Chem. Phys.
,
138
, pp.
658
665
.
13.
Ben Difallah
,
B.
,
Kharrat
,
M.
,
Dammak
,
M.
, and
Montei
,
G.
,
2012
, “
Mechanical and Tribological Response of ABS Polymer Matrix Filled With Graphite Powder
,”
Mater. Des.
,
34
, pp.
782
787
.
14.
An Huang
,
H.
,
Kharbas
,
T.
,
Ellingham
,
H.
,
Mi
,
L.-S.
,
Turng
,
X.
, and
Peng
,
2017
, “
Mechanical Properties, Crystallization Characteristics, and Foaming Behavior of Polytetrafluoroethylene-Reinforced Poly(Lactic Acid) Composites
,”
Polym. Eng. Sci.
,
57
(
5
), pp.
570
580
.
15.
Yang
,
M.
,
Zhang
,
Z.
,
Yuan
,
J.
,
Guo
,
F.
,
Men
,
X.
, and
Liu
,
W.
,
2017
, “
Synergistic Effects of AlB2 and Fluorinated Graphite on the Mechanical and Tribological Properties of Hybrid Fabric Composites
,”
Compos. Sci. Technol.
,
143
, pp.
75
81
.
16.
Wei Luo
,
Q.
,
Liu
,
Y.
,
Li
,
S.
,
Zhou
,
H.
,
Zou
,
M.
, and
Liang
,
2016
, “
Enhanced Mechanical and Tribological Properties in Polyphenylene Sulfide/Polytetrafluoroethylene Composites Reinforced by Short Carbon Fiber
,”
Composites, Part B
,
91
, pp.
579
588
.
17.
Rodriguez
,
V.
,
Sukumaran
,
J.
,
Schlarb
,
A. K.
, and
De Baets
,
P.
,
2016
, “
Influence of Solid Lubricants on Tribological Properties of Polyetheretherketone (PEEK)
,”
Tribol. Int.
,
103
, pp.
45
57
.
18.
Li
,
D.-X.
,
You
,
Y.-L.
,
Xin Deng
,
A.
,
Li
,
W.-J.
, and
Xie
,
Y.
,
2013
, “
Tribological Properties of Solid Lubricants Filled Glass Fiber Reinforced Polyamide 6 Composites
,”
Mater. Des.
,
46
, pp.
809
815
.
19.
Gao
,
C. P.
,
Guo
,
G. F.
,
Zhao
,
F. Y.
,
Wang
,
T. M.
,
Jim
,
B.
,
Wetzel
,
B.
,
Zhang
,
G.
, and
Wang
,
Q. H.
,
2016
, “
Tribological Behaviors of Epoxy Composites Under Water Lubrication Conditions
,”
Tribol. Int.
,
95
, pp.
333
341
.
20.
Li
,
Y.
,
Wang
,
S.
, and
Wang
,
Q.
,
2017
, “
Enhancement of Tribological Properties of Polymer Composites Reinforced by Functionalized Graphene
,”
Composites, Part B
,
120
, pp.
83
91
.
21.
Li
,
G.
,
Qi
,
H.
,
Zhang
,
G.
,
Zhao
,
F.
,
Wang
,
T.
, and
Wang
,
Q.
,
2017
, “
Significant Friction and Wear Reduction by Assembling Two Individual PEEK Composites With Specific Functionalities
,”
Mater. Des.
,
116
, pp.
152
159
.
22.
Zhong
,
Y. J.
,
Xie
,
G. Y.
,
Sui
,
G. X.
, and
Yang
,
R.
,
2011
, “
Poly(Ether Ether Ketone) Composites Reinforced by Short Carbon Fibers and Zirconium Dioxide Nanoparticles: Mechanical Properties and Sliding Wear Behavior With Water Lubrication
,”
J. Appl. Polym. Sci.
,
119
(
3
), pp.
1711
1720
.
23.
Xiaochen
,
H.
,
Ying
,
H.
,
Xiyu
,
H.
, and
Dong
,
J.
, “
Poly (Ether Ether Ketone) Composites Reinforced by Graphene Oxide and Silicon Dioxide Nanoparticles: Mechanical Properties and Sliding Wear Behavior
,”
High Perform. Polym.
,
30
(4), pp. 406–417.
24.
Akinci
,
A.
,
Sen
,
S.
, and
Sen
,
U.
,
2014
, “
Friction and Wear Behavior of Zirconium Oxide Reinforced PMMA Composites
,”
Composites, Part B
,
56
, pp.
42
47
.
25.
Liu Liu
,
L.
,
Xiao
,
M.
,
Li
,
X.
,
Zhang
,
Y.
,
Chang
,
L.
,
Shang
,
Y.
, and
Ao
,
2016
, “
Effect of Hexagonal Boron Nitride on High-Performance Polyether Ether Ketone Composites
,”
Colloid Polym. Sci.
,
294
(
1
), pp.
127
133
.
26.
Desai
,
J. R.
,
Shit
,
S. C.
, and
Jain
,
S. K.
,
2016
, “
Analysis of 3-Methacryloxypropyl Trimethoxysilane Treated Cenosphere Inclusion on Dynamic Mechanical Properties of ABS Composites
,”
Int. J. Plast. Technol.
,
20
(
2
), pp.
241
248
.
27.
He
,
M.
,
Zhang
,
D.
,
Guo
,
J.
, and
Wu
,
B.
,
2014
, “
Dynamic Mechanical Properties, Thermal, Mechanical Properties and Morphology of Long Glass Fiber-Reinforced Thermoplastic Polyurethane/Acrylonitrile–Butadiene–Styrene Composites
,”
J. Thermoplast. Compos. Mater.
,
29
(
3
), pp.
425
439
.
28.
Pandey
,
A. K.
,
Kumar
,
R.
,
Kachhavah
,
V. S.
, and
Kar
,
K. K.
,
2016
, “
Mechanical and Thermal Behaviours of Graphite Flake Reinforced Acrylonitrile Butadiene Styrene Composites and Their Correlation With Entanglement Density, Adhesion, Reinforcement and C Factor
,”
RSC Adv.
,
6
(
56
), pp.
50559
50571
.
29.
Amrishraj
,
D.
, and
Senthilvelan
,
T.
,
2017
, “
Acrylonitrile Butadiene Styrene Composites Reinforced With Nanozirconia and PTFE: Mechanical and Thermal Behavior
,”
Polym. Compos.
,
39
(53), pp. E1520–E1530.
30.
Dayma
,
N.
,
Satapathy
,
B. K.
, and
Patnaik
,
A.
,
2011
, “
Structural Correlations to Sliding Wear Performance of PA-6/PP-g-MA/Nanoclay Ternary Nanocomposites
,”
Wear
,
271
(
5–6
), pp.
827
836
.
31.
Saravanan
,
I.
, and
ElayaPerumal
,
A.
,
2016
, “
Wear Behavior of γ-Irradiated Ti6Al4V Alloy Sliding on TiN Deposited Steel Surface
,”
Tribol. Int.
,
93
, pp.
451
463
.
32.
Quaglini
,
V.
, and
Dubini
,
P.
,
2011
, “
Friction of Polymers Sliding on Smooth Surface
,”
Adv. Tribol.
,
2011
, p. 178943.
33.
Kurahatti
,
R. V.
,
Surendranathan
,
A. O.
,
Srivastava
,
S.
,
Singh
,
N.
,
Ramesh Kumar
,
A. V.
, and
Suresha
,
B.
,
2011
, “
Role of Zirconia Filler on Friction and Dry Sliding Wear Behaviour of Bismaleimide Nanocomposites
,”
Mater. Des.
,
32
(
5
), pp.
2644
2649
.
34.
Karami
,
P.
, and
Shojaei
,
A.
,
2017
, “
Improvement of Dry Sliding Tribological Properties of Polyamide 6 Using Diamond Nanoparticles
,”
Tribol. Int.
,
115
, pp.
370
377
.
35.
Palabiyik
,
M.
, and
Bahadur
,
S.
,
2002
, “
Tribological Studies of Polyamide 6 and High-Density Polyethylene Blends Filled With PTFE and Copper Oxide and Reinforced With Short Glass Fibers
,”
Wear
,
253
(
3–4
), pp.
369
376
.
36.
Dong
,
C.
,
Yuan
,
C.
,
Bai
,
X.
,
Qin
,
H.
, and
Yan
,
X.
,
2017
, “
Investigating Relationship Between Deformation Behaviours and Stick-Slip Phenomena of Polymer Material
,”
Wear
,
376–377
, pp.
1333
1338
.
37.
Chaudri
,
A. M.
,
Suvanto
,
M.
, and
Pakkanen
,
T. T.
,
2015
, “
Non-Lubricated Friction of Polybutylene Terephthalate (PBT) Sliding against Polyoxymethylene (POM)
,”
Wear
,
342–343
, pp.
189
197
.
38.
Anbuselvan
,
S.
, and
Ramanathan
,
S.
,
2010
, “
Dry Sliding Wear Behavior of as Cast ZE41A Magnesium Alloy
,”
Mater. Des.
,
31
(
4
), pp.
1930
1936
.
39.
Rasool
,
G.
, and
Stack
,
M. M.
,
2014
, “
Wear Maps for TiC Composite Based Coatings Deposited on 303 Stainless Steel
,”
Tribol. Int.
,
74
, pp.
93
102
.
40.
Srinivasan
,
V.
,
Maheshkumar
,
K. V.
, and
Karthikeyan
,
R.
,
2007
, “
Application of Probablistic Neural Network for the Development of Wear Mechanism Map for Glass Fiber Reinforced Plastics
,”
J. Reinf. Plast. Composites
,
26
(
18
), pp.
1893
1914
.
41.
Kato
,
K.
,
2001
, “
Classification of Wear Mechanisms/Models
,”
J. Eng. Tribol.
,
216
(
6
), pp.
349
355
.
You do not currently have access to this content.