In this paper, a calculation method based on matlab partial differential equations (PDE) tool is proposed to investigate the static characteristics of aerostatic spherical bearings. The Reynolds equation of aerostatic spherical bearings is transformed into a standard elliptic equation. The effects of geometric parameters and operational conditions on the film pressure, bearing film force, and stiffness are studied. The axial and radial eccentricities result in different film pressure distributions; the bearing film force and stiffness are significantly influenced by geometric parameters and operational conditions. The relative optimal parameters are confirmed based on the calculation results. A comparison between the numerical and experimental results is also presented. The highest relative error between the numerical results and the experimental data is 11.3%; the calculation results show good agreements with the experimental data, thus verifying the accuracy of the calculation method used in this paper.

References

References
1.
Meyer
,
D.
,
2003
, “
Reynolds Equation for Spherical Bearings
,”
ASME J. Tribol.
,
125
(
1
), pp.
203
206
.
2.
Kazama
,
T.
,
2000
, “
Optimum Design of Hydrostatic Spherical Bearings in Fluid Film Lubrication
,”
ASME J. Tribol.
,
122
(
4
), pp.
866
869
.
3.
Gupta
,
J.
, and
Deheri
,
G.
,
1996
, “
Effect of Roughness on the Behavior of Squeeze Film in a Spherical Bearing
,”
ASLE Trans.
,
39
(
1
), pp.
99
102
.
4.
Yacout
,
A. W.
,
Ismaeel
,
A. S.
, and
Kassab
,
S. Z.
,
2007
, “
The Combined Effects of the Centripetal Inertia and the Surface Roughness on the Hydrostatic Thrust Spherical Bearings Performance
,”
Tribol. Int.
,
40
(
3
), pp.
522
532
.
5.
Yoshimoto
,
S.
,
Yamamoto
,
M.
, and
Toda
,
K.
,
2007
, “
Numerical Calculations of Pressure Distribution in the Bearing Clearance of Circular Aerostatic Thrust Bearings With a Single Air Supply Inlet
,”
ASME J. Tribol.
,
129
(
2
), pp.
384
390
.
6.
Belforte
,
G.
,
Raparelli
,
T.
,
Trivella
,
A.
,
Viktorov
,
V.
, and
Visconte
,
C.
,
2015
, “
CFD Analysis of a Simple Orifice-Type Feeding System for Aerostatic Bearings
,”
Tribol. Lett.
,
58
(
2
), p.
25
.
7.
Gao
,
S.
,
Cheng
,
K.
,
Chen
,
S.
,
Ding
,
H.
, and
Fu
,
H.
,
2015
, “
CFD Based Investigation on Influence of Orifice Chamber Shapes for the Design of Aerostatic Thrust Bearings at Ultra-High Speed Spindles
,”
Tribol. Int.
,
92
, pp.
211
221
.
8.
Eleshaky
,
M. E.
,
2009
, “
CFD Investigation of Pressure Depressions in Aerostatic Circular Thrust Bearings
,”
Tribol. Int.
,
42
(
7
), pp.
1108
1117
.
9.
Belforte
,
G.
,
Colombo
,
F.
,
Raparelli
,
T.
,
Trivella
,
A.
, and
Viktorov
,
V.
,
2010
, “
Performance of Externally Pressurized Grooved Thrust Bearings
,”
Tribol. Lett.
,
37
(
3
), pp.
553
562
.
10.
Cui
,
H.
,
Wang
,
Y.
,
Yang
,
H.
,
Zhou
,
L.
,
Li
,
H.
,
Wang
,
W.
, and
Zhao
,
C.
,
2018
, “
Numerical Analysis and Experimental Research on the Angular Stiffness of Aerostatic Bearings
,”
Tribol. Int.
,
120
, pp.
166
178
.
11.
Huang
,
M.
,
Cui
,
H.
,
Liu
,
P.
,
Li
,
M.
, and
Jiang
,
Z.
,
2018
, “
A Theoretical and Experimental Study on the Stiffness of Aerostatic Thrust Bearings With Vacuum Preloading
,”
Proc. Inst. Mech. Eng. Part J
, (epub).
12.
Belforte
,
G.
,
Raparelli
,
T.
,
Viktorov
,
V.
, and
Trivella
,
A.
,
2007
, “
Discharge Coefficients of Orifice-Type Restrictor for Aerostatic Bearings
,”
Tribol. Int.
,
40
(
3
), pp.
512
521
.
13.
Song
,
L.
,
Cheng
,
K.
,
Ding
,
H.
, and
Chen
,
S.
,
2018
, “
Analysis on Discharge Coefficients in FEM Modeling of Hybrid Air Journal Bearings and Experimental Validation
,”
Tribol. Int.
,
119
, pp.
549
559
.
14.
Nishio
,
U.
,
Somaya
,
K.
, and
Yoshimoto
,
S.
,
2011
, “
Numerical Calculation and Experimental Verification of Static and Dynamic Characteristics of Aerostatic Thrust Bearings With Small Feedholes
,”
Tribol. Int.
,
44
(
12
), pp.
1790
1795
.
15.
Chang
,
S.
,
Chan
,
C.
, and
Jeng
,
Y.
,
2015
, “
Numerical Analysis of Discharge Coefficients in Aerostatic Bearings With Orifice-Type Restrictors
,”
Tribol. Int.
,
90
, pp.
157
163
.
16.
Cui
,
D.
,
Yao
,
Y.
, and
Qin
,
D.
,
2010
, “
Study on the Dynamic Characteristics of a New Type Externally Pressurized Spherical Gas Bearing With Slot–Orifice Double Restrictors
,”
Tribol. Int.
,
43
(
4
), pp.
822
830
.
17.
Wang
,
C. C.
, and
Kuo
,
C. L.
,
2010
, “
Nonlinear Dynamic Analysis of a Relatively Short Spherical Gas Journal Bearing System
,”
J. Mech. Sci. Technol.
,
24
(
8
), pp.
1565
1571
.
18.
Yang
,
G.
,
Ge
,
W.
,
Du
,
J.
, and
Liu
,
D.
,
2015
, “
Numerical Analysis of Spiral Grooved Opposed-Hemisphere Gas Bearings: A Parametric Study
,”
Proc. Inst. Mech. Eng. Part J.
,
230
(
8
), pp.
930
943
.
19.
Du
,
J.
,
Yang
,
G.
,
Ge
,
W.
, and
Liu
,
D.
,
2016
, “
Nonlinear Dynamic Analysis of a Rigid Rotor Supported by a Spiral-Grooved Opposed-Hemisphere Gas Bearing
,”
ASLE Trans.
,
59
(
5
), pp.
781
800
.
20.
Yang
,
G.
,
Du
,
J.
,
Ge
,
W.
,
Liu
,
D.
, and
Yang
,
X.
,
2017
, “
Dynamic Characteristics of Spiral-Grooved Opposed-Hemisphere Gas Bearings
,”
ASME J. Tribol.
,
139
(
3
), p.
031704
.
21.
Chalapat
,
K.
, and
Sritrakool
,
W.
,
2004
, “
Spin-Density Functional Approach to N-Electron Quantum Dots Within the Matlab PDE-Tool
,”
Comp. Mater. Sci.
,
30
(
3–4
), pp.
288
295
.
22.
Ihueze
,
C. C.
,
Mgbemena
,
C. O.
, and
Menon
,
A. R.
,
2014
, “
2D Static Failure Prediction for Critical Stresses of an Automobile Tire Side-Wall Using MATLAB PDE Toolbox
,”
IOSR J. Mech. Civ. Eng.
,
11
(
4
), pp.
70
76
.
23.
Chen
,
X.
,
Chen
,
H.
,
Luo
,
X.
,
Ye
,
Y.
,
Hu
,
Y.
, and
Xu
,
J.
,
2011
, “
Air Vortices and Nano-Vibration of Aerostatic Bearings
,”
Tribol. Lett.
,
42
(
2
), pp.
179
183
.
24.
Ma
,
W.
,
Cui
,
J.
,
Liu
,
Y.
, and
Tan
,
J.
,
2016
, “
Improving the Pneumatic Hammer Stability of Aerostatic Thrust Bearing With Recess Using Damping Orifices
,”
Tribol. Int.
,
103
, pp.
281
288
.
You do not currently have access to this content.