Abstract

The rapid development of high-speed railways necessitates the development of new materials for switch slide baseplates. In this study, a Cu–Ni–graphite composite, containing 1 wt% to 6 wt% graphite and prepared by powder metallurgy, was used as a potential material. Pin-on-disk wear tests were conducted to measure the sliding friction of the Cu–Ni–graphite composite against U75 V steel. The results showed that the friction coefficients gradually decreased when the graphite content in the composite ranged from 1 wt% to 4 wt% in the composite. When the graphite content was 4 wt%, the friction coefficient reached the minimum value (0.153). When the graphite content was low (1 wt% to 4 wt%), the primary wear mechanism was microcutting. An increased graphite content facilitated the generation of lubricating films and decreased the wear damage. As the graphite content increased from 4 wt% to 6 wt%, the friction coefficients also increased. The variation in the wear volume rate had the same tendency as the friction coefficient. When the graphite content exceeded 4 wt%, the primary wear mechanism was delamination and fatigue wear. Due to the tendency to form cracks on the subsurface and the plentiful generation of the spalled pits, the graphite fragments could not completely form lubricating films but separated as wear debris. The lubricating films existing on the U75 V steel were in proportion to the graphite content in the composite. The wear weight loss of the U75 V steel exhibited a reduction with increasing graphite content.

References

References
1.
Kim
,
D. S.
, and
Yoon
,
W. C.
,
2013
, “
An Accident Causation Model for the Railway Industry: Application of the Model to 80 Rail Accident Investigation Reports From the UK
,”
Safety. Sci.
,
60
(
12
), pp.
57
68
. 10.1016/j.ssci.2013.06.010
2.
Shen
,
W.
,
Cui
,
D. F.
, and
Shi
,
Y. J.
,
1998
, “
Research and Manufacture of Self-Lubricating Switch Glide
,”
China Railway Sci.
,
19
(
4
), pp.
103
110
.
3.
Bishop
,
D. M.
, and
Chambers
,
J.
,
1990
, “
Plastic Dry Bearings in Switch Slide Baseplates
,”
J. Rep. Proc- Permanent Way Institution
,
108
(
2
), pp.
155
173
.
4.
Liu
,
L. T.
, and
Feng
,
Z. X.
,
2003
, “
GPA-C Self-Lubricating Switch Slide Baseplates
,”
China Railway Society Annual Meeting
,
Shenyang, P. R. China
,
Sept. 1
, pp.
397
402
.
5.
Li
,
X. B.
,
Gao
,
Y. M.
,
Xing
,
J. D.
,
Wang
,
Y.
, and
Fang
,
L.
,
2004
, “
Wear Reduction Mechanism of Graphite and MoS2 in Epoxy Composites
,”
Wear
,
257
(
3–4
), pp.
279
283
. 10.1016/j.wear.2003.12.012
6.
Liu
,
Q. X.
,
Zlian
,
E. X.
, and
Ding
,
S. Z.
,
1983
, “
Study on Wear-Resistant-Lubricating Paste for the Bed Plate of HZt13-3
,”
Rail Switches Tribol.
,
3
(
4
), pp.
216
220
.
7.
Luo
,
Y. Y.
,
1998
, “
Research on the Switch Slide Baseplates Under the Conditions of dry Friction
,”
J. Shanghai Tiedao Univ.
,
19
(
10
), pp.
37
42
.
8.
Ma
,
W.
, and
Lu
,
J.
,
2011
, “
Effect of Surface Texture on Transfer Layer Formation and Tribological Behavior of Copper-Graphite Composite
,”
Wear
,
270
(
3
), pp.
218
229
. 10.1016/j.wear.2010.10.062
9.
Ma
,
W.
, and
Lu
,
J.
,
2011
, “
Effect of Sliding Speed on Surface Modification and Tribological Behavior of Copper-Graphite Composite
,”
Tribol. Lett.
,
41
(
2
), pp.
363
370
. 10.1007/s11249-010-9718-x
10.
Ma
,
W.
,
Lu
,
J.
, and
Wang
,
B.
,
2009
, “
Sliding Friction and Wear of Cu-Graphite Against 2024, AZ91D and Ti6Al4 V at Different Speeds
,”
Wear
,
266
(
11–12
), pp.
1072
1081
. 10.1016/j.wear.2009.01.051
11.
Moustafa
,
S. F.
,
El-Badry
,
S. A.
,
Sanad
,
A. M.
, and
Kieback
,
B.
,
2002
, “
Friction and Wear of Copper–Graphite Composites Made With Cu-Coated and Uncoated Graphite Powders
,”
Wear
,
253
(
7–8
), pp.
699
710
. 10.1016/S0043-1648(02)00038-8
12.
He
,
D. H.
, and
Manory
,
R.
,
2001
, “
A Novel Electrical Contact Material With Improved Self-Lubrication for Railway Current Collectors
,”
Wear
,
249
(
7
), pp.
626
636
. 10.1016/S0043-1648(01)00700-1
13.
Senthil
,
K. P.
,
Manisekar
,
K.
, and
Narayanasamy
,
R.
,
2014
, “
Experimental and Prediction of Abrasive Wear Behavior of Sintered Cu-SiC Composites Containing Graphite by Using Artificial Neural Networks
,”
Tribol. T.
,
57
(
3
), pp.
455
471
. 10.1080/10402004.2014.880979
14.
Prabhu
,
T. R.
,
Varma
,
V. K.
, and
Vedantam
,
S.
,
2014
, “
Tribological and Mechanical Behavior of Multilayer Cu/SiC + Gr Hybrid Composites for Brake Friction Material Applications
,”
Wear
,
317
(
1–2
), pp.
201
212
. 10.1016/j.wear.2014.06.006
15.
Kestursatya
,
M.
,
Kim
,
J. K.
, and
Rohatgi
,
P. K.
,
2001
, “
Friction and Wear Behavior of a Centrifugally Cast Lead-Free Copper Alloy Containing Graphite Particles
,”
Metall. Mater. Trans. A.
,
32
(
8
), pp.
2115
2125
. 10.1007/s11661-001-0023-z
16.
Clauss
,
F. J.
,
2012
,
Solid Lubricants and Self-Lubricating Solids
,
Elsevier
,
New York
.
17.
Zhan
,
Y.
,
Zhang
,
G.
, and
Wu
,
Y.
,
2004
, “
Effect of Surface Metallization of Graphite on the Tribological Properties of Copper Hybrid Composites
,”
Scandinavian J. Metall.
,
33
(
2
), pp.
80
84
. 10.1111/j.1600-0692.2004.00670.x
18.
Kato
,
H.
,
Takama
,
M.
,
Iwai
,
Y.
,
Washida
,
K.
, and
Sasaki
,
Y.
,
2003
, “
Wear and Mechanical Properties of Sintered Copper-tin Composites Containing Graphite or Molybdenum Disulfide
,”
Wear
,
255
(
1–6
), pp.
573
578
.
19.
Kováčik
,
J.
,
Štefan
,
E.
,
Bielek
,
J.
, and
Keleši
,
L.
,
2008
, “
Effect of Composition on Friction Coefficient of Cu-Graphite Composites
,”
Wear
,
265
(
3
), pp.
417
421
. 10.1016/j.wear.2007.11.012
20.
Wang
,
Y. R.
,
Gao
,
Y. M.
,
Sun
,
L.
,
Li
,
Y. F.
,
Zheng
,
B. C.
, and
Zhai
,
W. Y.
,
2017
, “
Effect of Physical Properties of Cu-Ni-Graphite Composites on Tribological Characteristics by Grey Correlation Analysis
,”
Results. Phy.
,
7
, pp.
263
271
. 10.1016/j.rinp.2016.12.041
21.
Wang
,
Y. R.
,
Gao
,
Y. M.
,
Li
,
Y. F.
,
Zhang
,
C.
,
Sun
,
L.
, and
Zhai
,
W. Y.
,
2017
, “
Research on Nickel Modified Graphite/Cu Composites Interface
,”
Surf. Coat. Tech.
,
328
, pp.
70
79
. 10.1016/j.surfcoat.2017.08.036
22.
Wang
,
Y. R.
,
Gao
,
Y. M.
,
Li
,
Y. F.
,
Zhang
,
C.
,
Huang
,
X. Y.
, and
Zhai
,
W. Y.
,
2017
, “
“Effect of milling time on microstructure and mechanical properties of Cu-Ni-graphite composites
,”
Mater. Res. Express
,
4
, p.
096506
. 10.1088/2053-1591/aa84a7
23.
Wang
,
Y. R.
,
Gao
,
Y. M.
,
Takahashi
,
J.
,
Wan
,
Y.
,
Li
,
Y. F.
,
Li
,
M. T.
,
Zhang
,
C.
,
Xiao
,
B.
,
He
,
X. D.
, and
Li
,
J.
,
2019
, “
Effect of plating time on surface evolution of chromium modified graphite powder by multi-arc ion plating
,”
Surf. Topogr.: Metrol. Prop.
,
7
(
3
), p.
015009
. 10.1088/2051-672X/aafef3
24.
Wang
,
Y. R.
,
Gao
,
Y. M.
,
Takahashi
,
J.
,
Wan
,
Y.
,
He
,
X. D.
,
Zhang
,
Y. Q.
,
Xiao
,
B.
,
Zhang
,
C.
,
2019
, “
The Study of Microstructure Characterization: Cu Modified Cu-Ni-Graphite Composite
,”
Com. Inter.
. 10.1080/09276440.2019.1621598
25.
Wang
,
Y. R.
,
Gao
,
Y. M.
,
Takahashi
,
J.
,
Wan
,
Y.
,
Xiao
,
B.
,
Zhang
,
Y. Q.
,
He
,
X. D.
, and
Li
,
J.
,
2019
, “
Titanium Modified Graphite Reinforced Cu-Ni Composite by Multi-arc ion Plating Technology
,”
Vacuum
,
168
. 10.1016/j.vacuum.2019.108829
26.
Wang
,
Y. R.
,
Gao
,
Y. M.
,
Li
,
Y. F.
,
Zhai
,
W. Y.
,
Sun
,
L.
, and
Zhang
,
C.
,
2019
, “
Review on Preparation and Application of Copper-Steel Bimetal Composites
,”
Emerg. Mater. Res.
,
8
(
4)
. 10.1680/jemmr.17.00008
27.
Wang
,
Y. R.
,
Gao
,
Y. M.
,
Takahashi
,
J.
,
Wan
,
Y.
,
Li
,
M. T.
,
Xiao
,
B.
,
Zhang
,
Y. Q.
, and
He
,
X. D.
,
2019
, “
Investigation of Modification of Cu-Ni-Graphite Composite by Silver
,”
Mater. Chem. Phys.
,
239
. 10.1016/j.matchemphys.2019.121990
28.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
29.
Li
,
F.
,
Yan
,
F. Y.
,
Yu
,
L. G.
, and
Liu
,
W. M.
,
2000
, “
The Tribological Behaviors of Copper-Coated Graphite Filled PTFE Composites
,”
Wear
,
237
(
1
), pp.
33
38
. 10.1016/S0043-1648(99)00303-8
You do not currently have access to this content.