Abstract

Due to the limited solid-solubility of Fe and Ni in Al, coarse brittle intermetallics rich in Fe and/or Ni are inevitably formed in the as-cast microstructure of Al-Fe-Ni alloys. Upon formation, Fe(Ni)-rich intermetallics significantly deteriorate the properties and restrict the application of alloy in as-cast condition. The purpose of this study was to investigate the effect of friction stir processing (FSP) on microstructure and tribological properties of cast Al-7Fe-5Ni alloy. The dry sliding wear tests were done by using a pin-on-disk type machine under the applied pressures of 1, 2, and 3 MPa, sliding distance of 1000 m, at room temperature. According to the results, FSP (1250 rpm and 8 mm/min) effectively refined the microstructure, especially the coarse primary Al9FeNi intermetallics and eliminated the alloy casting-related defects. FSP also converted the large columnar grains of the cast alloys to the ultrafine equiaxed grains. These microstructural changes enhanced the substrate mechanical properties thereby increased its resistance against sliding-induced plastic flow, leading to the higher tribolayer stability on the surface, and accordingly, higher wear resistance. The results showed that applying 1-pass FSP reduced the wear by 13% and 53% under applied pressures of 1 and 3 MPa, respectively. The friction results also revealed that, compared with the as-cast sample, FSPed samples exhibited lower friction coefficient and friction coefficient fluctuations.

References

1.
Zhang
,
L.
, and
Du
,
Y.
,
2007
, “
Thermodynamic Description of the Al–Fe–Ni System Over the Whole Composition and Temperature Ranges: Modeling Coupled With Key Experiment
,”
Calphad
,
31
(
4
), pp.
529
540
. 10.1016/j.calphad.2007.03.003
2.
Průša
,
F.
,
Vojtěch
,
D.
,
Michalcová
,
A.
, and
Marek
,
I.
,
2014
, “
Mechanical Properties and Thermal Stability of Al–Fe–Ni Alloys Prepared by Centrifugal Atomisation and Hot Extrusion
,”
Mater. Sci. Eng. A
,
603
, pp.
141
149
. 10.1016/j.msea.2014.02.081
3.
Cubero-Sesin
,
J. M.
, and
Horita
,
Z.
,
2012
, “
Powder Consolidation of Al–10 wt% Fe Alloy by High-Pressure Torsion
,”
Mater. Sci. Eng. A
,
558
, pp.
462
471
. 10.1016/j.msea.2012.08.029
4.
Premkumar
,
M.
,
Lawley
,
A.
, and
Koczak
,
M.
,
1992
, “
Processing and Microstructure of
,”
Metall. Trans. A
,
23
(
1
), pp.
3219
3230
. 10.1007/bf03024529
5.
Kostov
,
A.
,
2018
, “
Investigation of Thermodynamic Properties Composition of Al-Fe-Ni System
,”
Int. J. Eng. Res. Sci.
,
4
(
1
), pp.
21
28
.
6.
Eleno
,
L.
,
Frisk
,
K.
, and
Schneider
,
A.
,
2006
, “
Assessment of the Fe–Ni–Al System
,”
Intermetallics
,
14
(
10–11
), pp.
1276
1290
. 10.1016/j.intermet.2005.11.021
7.
Kim
,
T.-S.
,
Suryanarayana
,
C.
, and
Chun
,
B.-S.
,
2000
, “
Effect of Alloying Elements and Degassing Pressure on the Structure and Mechanical Properties of Rapidly Solidified Al–20Si–5Fe–2X (X = Cr, Zr, or Ni) Alloys
,”
Mater. Sci. Eng. A
,
278
(
1–2
), pp.
113
120
. 10.1016/S0921-5093(99)00589-4
8.
Culliton
,
D.
,
Betts
,
A.
, and
Kennedy
,
D.
,
2013
, “
Impact of Intermetallic Precipitates on the Tribological and/or Corrosion Performance of Cast Aluminium Alloys: A Short Review
,”
Int. J. Cast Met. Res.
,
26
(
2
), pp.
65
71
. 10.1179/1743133612Y.0000000038
9.
Taghiabadi
,
R.
, and
Ghasemi
,
H.
,
2009
, “
Dry Sliding Wear Behaviour of Hypoeutectic Al–Si Alloys Containing Excess Iron
,”
Mater. Sci. Technol.
,
25
(
8
), pp.
1017
1022
. 10.1179/174328408x302468
10.
Abouei
,
V.
,
Saghafian
,
H.
,
Shabestari
,
S.
, and
Zarghami
,
M.
,
2010
, “
Effect of Fe-Rich Intermetallics on the Wear Behavior of Eutectic Al–Si Piston Alloy (LM13)
,”
Mater. Des.
,
31
(
7
), pp.
3518
3524
. 10.1016/j.matdes.2010.02.015
11.
Abouei
,
V.
,
Shabestari
,
S.
, and
Saghafian
,
H.
,
2010
, “
Dry Sliding Wear Behaviour of Hypereutectic Al–Si Piston Alloys Containing Iron-Rich Intermetallics
,”
Mater. Charact.
,
61
(
11
), pp.
1089
1096
. 10.1016/j.matchar.2010.07.001
12.
Akaberi
,
N.
,
Taghiabadi
,
R.
, and
Razaghian
,
A.
,
2017
, “
Effect of Bifilm Oxides on the Dry Sliding Wear Behavior of Fe-Rich Al–Si Alloys
,”
ASME J. Tribol.
,
139
(
5
), p.
051602
. 10.1115/1.4035340
13.
Nadim
,
A.
,
Taghiabadi
,
R.
,
Razaghian
,
A.
,
Noghani
,
M.
, and
Ghoncheh
,
M.
,
2018
, “
Effect of Fe-Impurity on Tribological Properties of Al-15Mg2Si Composite
,”
Trans. Nonferrous Met. Soc. China
,
28
(
6
), pp.
1084
1093
. 10.1016/S1003-6326(18)64744-2
14.
Nadim
,
A.
,
Taghiabadi
,
R.
, and
Razaghian
,
A.
,
2018
, “
Effect of Mn Modification on the Tribological Properties of In Situ Al-15Mg2Si Composites Containing Fe as an Impurity
,”
ASME J. Tribol.
,
140
(
6
), p.
061610
. 10.1115/1.4040384
15.
Pouladvand
,
S.
,
Taghiabadi
,
R.
, and
Shahriyari
,
F.
,
2018
, “
Investigation of the Tribological Properties of AlxSi-1.2 Fe (Mn)(x = 5-13 wt.%) Alloys
,”
J. Mater. Eng. Perform.
,
27
(
7
), pp.
3323
3334
. 10.1007/s11665-018-3420-9
16.
Chen
,
J.
,
Lengsdorf
,
R.
,
Henein
,
H.
,
Herlach
,
D.
,
Dahlborg
,
U.
, and
Calvo-Dahlborg
,
M.
,
2013
, “
Microstructure Evolution in Undercooled Al–8 wt% Fe Melts: Comparison Between Terrestrial and Parabolic Flight Conditions
,”
J. Alloys Compd.
,
556
, pp.
243
251
. 10.1016/j.jallcom.2012.11.182
17.
McShane
,
H.
, and
Sheppard
,
T.
,
1984
, “
Production Structure and Properties of Al–Fe–Ni–Co Alloy Prepared From Atomized Powder
,”
Powder Metall.
,
27
(
2
), pp.
101
106
. 10.1179/pom.1984.27.2.101
18.
Mohr
,
G.
,
Johannsen
,
J.
,
Knoop
,
D.
,
Gärtner
,
E.
,
Hummert
,
K.
, and
Emmelmann
,
C.
,
2017
, “
Processing of a High-Strength Al-Fe-Ni Alloy Using Laser Beam Melting and its Potential for In-Situ Graded Mechanical Properties
,”
Lasers in Manufacturing Conference LIM 2017
,
München, Deutschland, Wissenschaftliche Gesellschaft Lasertechnik e.V.
,
June 26–29
.
19.
Nayak
,
S.
,
Wollgarten
,
M.
,
Banhart
,
J.
,
Pabi
,
S.
, and
Murty
,
B.
,
2010
, “
Nanocomposites and an Extremely Hard Nanocrystalline Intermetallic of Al–Fe Alloys Prepared by Mechanical Alloying
,”
Mater. Sci. Eng. A
,
527
(
9
), pp.
2370
2378
. 10.1016/j.msea.2009.12.044
20.
Zeng
,
Y.
,
Li
,
W.
,
Li
,
S.
,
Xiao
,
Y.
, and
Chen
,
L.
,
1997
, “
Deformation and Fracture of Dispersion-Strengthened High-Temperature Al-8. 5 Fe-1. 3 V-1. 7 Si Alloy
,”
J. Cent. South Univ. Technol.
,
4
(
2
), pp.
120
124
. 10.1007/s11771-997-0012-5
21.
Ma
,
Z.
,
2008
, “
Friction Stir Processing Technology: A Review
,”
Metall. Mater. Trans. A
,
39
(
3
), pp.
642
658
. 10.1007/s11661-007-9459-0
22.
Gan
,
W.-y.
,
Zheng
,
Z.
,
Zhang
,
H.
, and
Tao
,
P.
,
2014
, “
Evolution of Microstructure and Hardness of Aluminum After Friction Stir Processing
,”
Trans. Nonferrous Met. Soc. China
,
24
(
4
), pp.
975
981
. 10.1016/S1003-6326(14)63151-4
23.
Mishra
,
R. S.
, and
Ma
,
Z.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R.
,
50
(
1–2
), pp.
1
78
. 10.1016/j.mser.2005.07.001
24.
Akbari
,
M.
,
Khalkhali
,
A.
,
Keshavarz
,
S. M. E.
, and
Sarikhani
,
E.
,
2018
, “
The Effect of In-Process Cooling Conditions on Temperature, Force, Wear Resistance, Microstructural, and Mechanical Properties of Friction Stir Processed A356
,”
Proc. Inst. Mech. Eng. Part L
,
232
(
5
), pp.
429
437
. 10.1177/1464420716630569
25.
El-Rayes
,
M. M.
, and
El-Danaf
,
E. A.
,
2012
, “
The Influence of Multi-Pass Friction Stir Processing on the Microstructural and Mechanical Properties of Aluminum Alloy 6082
,”
J. Mater. Process. Technol.
,
212
(
5
), pp.
1157
1168
. 10.1016/j.jmatprotec.2011.12.017
26.
Chen
,
Y.
,
Ding
,
H.
,
Li
,
J.
,
Cai
,
Z.
,
Zhao
,
J.
, and
Yang
,
W.
,
2016
, “
Influence of Multi-Pass Friction Stir Processing on the Microstructure and Mechanical Properties of Al-5083 Alloy
,”
Mater. Sci. Eng. A
,
650
, pp.
281
289
. 10.1016/j.msea.2015.10.057
27.
Guru
,
P.
,
Panigrahi
,
S.
, and
Ram
,
G. J.
,
2015
, “
Enhancing Strength, Ductility and Machinability of a Al–Si Cast Alloy by Friction Stir Processing
,”
J. Manuf. Process.
,
18
, pp.
67
74
. 10.1016/j.jmapro.2015.01.005
28.
Rathee
,
S.
,
Maheshwari
,
S.
,
Siddiquee
,
A. N.
, and
Srivastava
,
M.
,
2018
, “
Distribution of Reinforcement Particles in Surface Composite Fabrication via Friction Stir Processing: Suitable Strategy
,”
Mater. Manuf. Process.
,
33
(
3
), pp.
262
269
. 10.1080/10426914.2017.1303147
29.
Pekguleryuz
,
M.
,
Lin
,
S.
,
Ozbakir
,
E.
,
Temur
,
D.
, and
Aliravci
,
C.
,
2010
, “
Hot Tear Susceptibility of Aluminium–Silicon Binary Alloys
,”
Int. J. Cast Met. Res.
,
23
(
5
), pp.
310
320
. 10.1179/136404610X12738456167267
30.
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Berry
,
J.
,
1999
, “
Uncertainty Analysis of Metal-Casting Porosity Measurements Using Archimedes’ Principle
,”
Int. J. Cast Met. Res.
,
11
(
4
), pp.
247
257
. 10.1080/13640461.1999.11819281
31.
Aktarer
,
S.
,
Sekban
,
D.
,
Saray
,
O.
,
Kucukomeroglu
,
T.
,
Ma
,
Z.
, and
Purcek
,
G.
,
2015
, “
Effect of Two-Pass Friction Stir Processing on the Microstructure and Mechanical Properties of As-Cast Binary Al–12Si Alloy
,”
Mater. Sci. Eng. A
,
636
, pp.
311
319
. 10.1016/j.msea.2015.03.111
32.
Cullity
,
B. D.
, and
Stock
,
S. R.
,
2001
,
Elements of X-Ray Diffraction
,
Prentice Hall
,
New Jersey
.
33.
Darling
,
K.
,
Roberts
,
A.
,
Armstrong
,
L.
,
Kapoor
,
D.
,
Tschopp
,
M.
,
Kecskes
,
L.
, and
Mathaudhu
,
S.
,
2014
, “
Influence of Mn Solute Content on Grain Size Reduction and Improved Strength in Mechanically Alloyed Al–Mn Alloys
,”
Mater. Sci. Eng. A
,
589
, pp.
57
65
. 10.1016/j.msea.2013.09.047
34.
Yousefi
,
F.
,
Taghiabadi
,
R.
, and
Baghshahi
,
S.
,
2018
, “
Effect of Partial Substitution of Mn for Ni on Mechanical Properties of Friction Stir Processed Hypoeutectic Al-Ni Alloys
,”
Metall. Mater. Trans. B
,
49
(
6
), pp.
3007
3018
. 10.1007/s11663-018-1422-5
35.
Periyasamy
,
P.
,
Mohan
,
B.
, and
Balasubramanian
,
V.
,
2012
, “
Effect of Heat Input on Mechanical and Metallurgical Properties of Friction Stir Welded AA6061-10% SiCp MMCs
,”
J. Mater. Eng. Perform.
,
21
(
11
), pp.
2417
2428
. 10.1007/s11665-012-0176-5
36.
Liu
,
H.
,
Zhang
,
H.
,
Pan
,
Q.
, and
Yu
,
L.
,
2012
, “
Effect of Friction Stir Welding Parameters on Microstructural Characteristics and Mechanical Properties of 2219-T6 Aluminum Alloy Joints
,”
Int. J. Mater. Form.
,
5
(
3
), pp.
235
241
. 10.1007/s12289-011-1048-5
37.
Humphreys
,
F. J.
, and
Hatherly
,
M.
,
2012
,
Recrystallization and Related Annealing Phenomena
,
Elsevier
,
New York
.
38.
Revankar
,
G. D.
,
Shetty
,
R.
,
Rao
,
S. S.
, and
Gaitonde
,
V. N.
,
2017
, “
Wear Resistance Enhancement of Titanium Alloy (Ti–6Al–4 V) by Ball Burnishing Process
,”
J. Mater. Res. Technol.
,
6
(
1
), pp.
13
32
. 10.1016/j.jmrt.2016.03.007
39.
Lu
,
Z.
,
Zeng
,
M.
,
Gao
,
Y.
, and
Zhu
,
M.
,
2013
, “
Minimizing Tribolayer Damage by Strength–Ductility Matching in Dual-Scale Structured Al–Sn Alloys: A Mechanism for Improving Wear Performance
,”
Wear
,
304
(
1–2
), pp.
162
172
. 10.1016/j.wear.2013.05.001
40.
Jiang
,
J.
,
Stott
,
F.
, and
Stack
,
M.
,
1998
, “
The Role of Triboparticulates in Dry Sliding Wear
,”
Tribol. Int.
,
31
(
5
), pp.
245
256
. 10.1016/S0301-679X(98)00027-9
41.
Feyzullahoğlu
,
E.
, and
Şakiroğlu
,
N.
,
2011
, “
The Tribological Behaviours of Aluminium-Based Materials Under Dry Sliding
,”
Ind. Lubr. Tribol.
,
63
(
5
), pp.
350
358
. 10.1108/00368791111154968
42.
Sundström
,
A.
,
Rendón
,
J.
, and
Olsson
,
M.
,
2001
, “
Wear Behaviour of Some Low Alloyed Steels Under Combined Impact/Abrasion Contact Conditions
,”
Wear
,
250
(
1–12
), pp.
744
754
. 10.1016/S0043-1648(01)00712-8
43.
Sarmadi
,
H.
,
Kokabi
,
A.
, and
Reihani
,
S. S.
,
2013
, “
Friction and Wear Performance of Copper–Graphite Surface Composites Fabricated by Friction Stir Processing (FSP)
,”
Wear
,
304
(
1–2
), pp.
1
12
. 10.1016/j.wear.2013.04.023
44.
Rigney
,
D.
, and
Hammerberg
,
J.
,
1998
, “
Unlubricated Sliding Behavior of Metals
,”
MRS Bull.
,
23
(
6
), pp.
32
36
. 10.1557/S0883769400030608
45.
Ma
,
H.
,
Li
,
J.
,
Jiao
,
J.
,
Chang
,
C.
,
Wang
,
G.
,
Shen
,
J.
,
Wang
,
X.
, and
Li
,
R.
,
2017
, “
Wear Resistance of Fe-Based Amorphous Coatings Prepared by AC-HVAF and HVOF
,”
Mater. Sci. Technol.
,
33
(
1
), pp.
65
71
. 10.1080/02670836.2016.1160195
46.
Richard
,
D.
,
Iordanoff
,
I.
,
Berthier
,
Y.
,
Renouf
,
M.
, and
Fillot
,
N.
,
2007
, “
Friction Coefficient as a Macroscopic View of Local Dissipation
,”
ASME J. Tribol.
,
129
(
4
), pp.
829
835
. 10.1115/1.2768083
47.
Ramesh
,
C.
, and
Prasad
,
T.
,
2009
, “
Friction and Wear Behavior of Graphite-Carbon Short Fiber Reinforced Al–17% Si Alloy Hybrid Composites
,”
ASME J. Tribol.
,
131
(
1
), p.
014501
. 10.1115/1.2991124
48.
Kato
,
K.
,
2000
, “
Wear in Relation to Friction—A Review
,”
Wear
,
241
(
2
), pp.
151
157
. 10.1016/S0043-1648(00)00382-3
You do not currently have access to this content.