Abstract

The Greenwood–Williamson (GW) model has been one of the commonly used contact models to study rough surface contact problems during the past decades. While this has been a successful model, it still has a number of restrictions: (i) surface asperities are spheres; (ii) the overall deformation must be assumed to be small enough, such that there is no interaction between asperities, i.e., they are independent of each other; and (iii) asperity deformation remains elastic. This renders the GW model unrealistic in many situations. In the present work, we resolve above restrictions in a discrete version of the GW model: instead of spherical asperities, we assumed that the surface consists of three-dimensional sinusoidal asperities which appear more similar to asperities on a rough surface. For single asperity mechanical response, we propose a Hertz-like analytical solution for purely elastic deformation and a semi-analytical solution based on finite element method (FEM) for elastic–plastic deformation. The asperity interaction is accounted for by discretely utilizing a modified Boussinesq solution without consideration of asperity merger. It is seen that the asperity interaction effect is more than just the delay of contact as shown in the statistical model, it also contributes to the loss of linearity between the contact force and the contact area. Our model also shows that: for elastic contact, using spherical asperities results in a larger average contact pressure than using sinusoids; when plasticity is taken into account, using a sphere to represent asperities results in a softer response as compared with using sinusoids. It is also confirmed that sinusoidal asperities are a much better description than spheres, by comparison with fully resolved FEM simulation results for computer-generated rough surfaces.

References

1.
Zhai
,
C.
,
Hanaor
,
D.
,
Proust
,
G.
,
Brassart
,
L.
, and
Gan
,
Y.
,
2016
, “
Interfacial Electro-Mechanical Behaviour at Rough Surfaces
,”
Extreme Mech. Lett.
,
9
(
3
), pp.
422
429
. 10.1016/j.eml.2016.03.021
2.
Zhai
,
C.
,
Hanaor
,
D.
, and
Gan
,
Y.
,
2017
, “
Contact Stiffness of Multiscale Surfaces by Truncation Analysis
,”
Int. J. Mech. Sci.
,
131–132
, pp.
305
316
. 10.1016/j.ijmecsci.2017.07.018
3.
Gao
,
Z.
,
Fu
,
W.
,
Wang
,
W.
,
Kang
,
W.
, and
Liu
,
Y.
,
2018
, “
The Study of Anisotropic Rough Surfaces Contact Considering Lateral Contact and Interaction Between Asperities
,”
Tribol. Int.
,
126
, pp.
270
282
. 10.1016/j.triboint.2018.01.056
4.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
295
(
1442
), pp.
300
319
. 10.1098/rspa.1966.0242
5.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
6.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
,
1975
, “
The Elastic Contact of Rough Surfaces
,”
Wear
,
35
(
1
), pp.
87
111
. 10.1016/0043-1648(75)90145-3
7.
Poon
,
C. Y.
, and
Bhushan
,
B.
,
1995
, “
Comparison of Surface Roughness Measurements by Stylus Profiler, AFM and Non-Contact Optical Profiler
,”
Wear
,
190
(
1
), pp.
76
88
. 10.1016/0043-1648(95)06697-7
8.
Song
,
H.
,
Dikken
,
R. J.
,
Nicola
,
L.
, and
Van der Giessen
,
E.
,
2015
, “
Plastic Ploughing of a Sinusoidal Asperity on a Rough Surface
,”
ASME J. Appl. Mech
,
82
(
7
), p.
071006
. 10.1115/1.4030318
9.
Sun
,
F.
,
Van der Giessen
,
E.
, and
Nicola
,
L.
,
2012
, “
Plastic Flattening of a Sinusoidal Metal Surface: A Discrete Dislocation Plasticity Study
,”
Wear
,
296
(
1–2
), pp.
672
680
. 10.1016/j.wear.2012.08.007
10.
Gao
,
Y. F.
,
Bower
,
A. F.
,
Kim
,
K. S.
,
Lev
,
L.
, and
Cheng
,
Y. T.
,
2006
, “
The Behavior of an Elastic–Perfectly Plastic Sinusoidal Surface Under Contact Loading
,”
Wear
,
261
(
2
), pp.
145
154
. 10.1016/j.wear.2005.09.016
11.
Saha
,
S.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2016
, “
Perfectly Elastic Axisymmetric Sinusoidal Surface Asperity Contact
,”
ASME. J. Tribol.
,
138
(
3
), p.
031401
. 10.1115/1.4031994
12.
Ciavarella
,
M.
,
Greenwood
,
J. A.
, and
Paggi
,
M.
,
2008
, “
Inclusion of “Interaction” in the Greenwood and Williamson Contact Theory
,”
Wear
,
265
(
5–6
), pp.
729
734
. 10.1016/j.wear.2008.01.019
13.
Song
,
H.
,
Van der Giessen
,
E.
, and
Vakis
,
A. I.
,
2016
, “
Erratum: Asperity Interaction and Substrate Deformation in Statistical Summation Models of Contact Between Rough Surfaces [Journal of Applied Mechanics, 2014, 81(4), p. 041012]
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
087001
. 10.1115/1.4033534
14.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
. 10.1115/1.1490373
15.
Song
,
H.
,
Vakis
,
A. I.
,
Liu
,
X.
, and
Van der Giessen
,
E.
,
2017
, “
Statistical Model of Rough Surface Contact Accounting for Size-Dependent Plasticity and Asperity Interaction
,”
J. Mech. Phys. Solids
,
106
, pp.
1
14
. 10.1016/j.jmps.2017.05.014
16.
Smith
,
2014
,
ABAQUS User's Maunual, Version 6.14
,
Dassault Systemes Simula Corporation, Providence, RI
.
17.
Afferrante
,
L.
,
Bottiglione
,
F.
,
Putignano
,
C.
,
Persson
,
B. N. J.
, and
Carbone
,
G.
,
2018
, “
Elastic Contact Mechanics of Randomly Rough Surfaces: An Assessment of Advanced Asperity Models and Persson’s Theory
,”
Tribol. Lett.
,
66
(
2
), p.
2
. 10.1007/s11249-018-1026-x
18.
Persson
,
B. N. J.
,
2006
, “
Contact Mechanics for Randomly Rough Surfaces
,”
Surf. Sci. Rep.
,
61
(
4
), pp.
201
227
. 10.1016/j.surfrep.2006.04.001
19.
Taloni
,
A.
,
Benassi
,
A.
,
Sandfeld
,
S.
, and
Zapperi
,
S.
,
2015
, “
Scalar Model for Frictional Precursors Dynamics
,”
Sci. Rep.
,
5
(
8086
), pp.
1
11
. 10.1038/srep08086
20.
Persson
,
B. N. J.
,
Bucher
,
F.
, and
Chiaia
,
B.
,
2002
, “
Elastic Contact Between Randomly Rough Surfaces: Comparison of Theory With Numerical Results
,”
Phys. Rev. B
,
65
(
18
), p.
184106
. 10.1103/PhysRevB.65.184106
21.
Carbone
,
G.
, and
Bottiglione
,
F.
,
2008
, “
Asperity Contact Theories: Do They Predict Linearity Between Contact Area and Load?
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2555
2572
. 10.1016/j.jmps.2008.03.011
22.
Kalin
,
M.
,
Pogačnik
,
A.
,
Etsion
,
I.
, and
Raeymaekers
,
B.
,
2016
, “
Comparing Surface Topography Parameters of Rough Surfaces Obtained With Spectral Moments and Deterministic Methods
,”
Tribol. Int.
,
93
, pp.
137
141
. 10.1016/j.triboint.2015.09.013
23.
Chandrasekar
,
S.
,
Eriten
,
M.
, and
Polycarpou
,
A. A.
,
2012
, “
An Improved Model of Asperity Interaction in Normal Contact of Rough Surfaces
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011025
. 10.1115/1.4007142
24.
Li
,
S.
,
Yao
,
Q.
,
Li
,
Q.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2018
, “
Contact Stiffness of Regularly Patterned Multi-Asperity Interfaces
,”
J. Mech. Phys. Solids
,
111
, pp.
277
289
. 10.1016/j.jmps.2017.10.019
25.
Yin
,
X.
, and
Komvopoulos
,
K.
,
2012
, “
A Discrete Dislocation Plasticity Analysis of a Single-Crystal Semi-Infinite Medium Indented by a Rigid Surface Exhibiting Multi-Scale Roughness
,”
Phil. Mag.
,
92
(
24
), pp.
2984
3005
. 10.1080/14786435.2012.682178
You do not currently have access to this content.