Abstract

Wear particle-induced osteolysis is the main reason for the long-term failure of total knee replacement. Simulator testing is the standard procedure for validating wear performance pre-clinically. The load and kinematics specified in the International Organization for Standardization (ISO) are standard input profiles for wear testing of implants. Directions of internal–external (IE) rotation and anterior–posterior (AP) translation have been modified in the new version of ISO 14243-3 2014. This study focused on investigating the effects of internal–external rotation and anterior–posterior translation on the wear of knee implants. Numerical wear prediction was performed using the finite element model along with two wear models, namely the contact pressure independent model and contact pressure dependent model. Addition of internal–external rotation significantly increased the wear, and the two wear models obtained similar results. The effect of internal–external rotation direction on wear was slight. Forward movement of the tibial insert during flexion decreased the wear under the contact pressure independent model and increased the wear under the contact pressure dependent model. When the AP direction switched, the two models obtained opposite wear tendencies. The results predicted by the contact pressure dependent model were consistent with those of wear tendency experiments reported in the literature. Further investigation of wear physical principles was necessary to gain a more reliable model. This study demonstrated that both internal–external rotation and anterior–posterior translation were pivotal factors influencing the contact mechanism and wear of total knee implants. More realistic kinematics are necessary for accurate wear assessment.

References

References
1.
Fornalski
,
S.
,
McGarry
,
M. H.
,
Bui
,
C. N. H.
,
Kim
,
W. C.
, and
Lee
,
T. Q.
,
2012
, “
Biomechanical Effects of Joint Line Elevation in Total Knee Arthroplasty
,”
Clin. Biomech.
,
27
(
8
), pp.
824
829
. 10.1016/j.clinbiomech.2012.05.009
2.
Mell
,
S. P.
,
Fullam
,
S.
,
Wimmer
,
M. A.
, and
Lundberg
,
H. J.
,
2018
, “
Finite Element Evaluation of the Newest ISO Testing Standard for Polyethylene Total Knee Replacement Liners
,”
Proc. Inst. Mech. Eng. H
,
232
(
6
), pp.
545
552
. 10.1177/0954411918770700
3.
Gopal
,
V.
,
Chandran
,
M.
,
Ramachandra Rao
,
M. S.
,
Mischler
,
S.
,
Cao
,
S.
, and
Manivasagam
,
G.
,
2017
, “
Tribocorrosion and Electrochemical Behaviour of Nanocrystalline Diamond Coated Ti Based Alloys for Orthopaedic Application
,”
Tribol. Int.
,
106
, pp.
88
100
. 10.1016/j.triboint.2016.10.040
4.
Saikko
,
V.
,
2014
, “
Effect of Shelf Versus Accelerated Aging of UHMWPE on Delamination in Knee Wear Simulation
,”
Tribol. Int.
,
73
, pp.
10
16
. 10.1016/j.triboint.2014.01.001
5.
Franta
,
L.
,
Kronek
,
J.
, and
Suchánek
,
J.
,
2011
, “
TKA Wear Testing Input After Kinematic and Dynamic Meta-Analysis: Technique and Proof of Concept
,”
Wear
,
271
(
9–10
), pp.
2687
2692
. 10.1016/j.wear.2011.02.026
6.
Sanders
,
A. P.
,
Lockard
,
C. A.
,
Weisenburger
,
J. N.
,
Haider
,
H.
, and
Raeymaekers
,
B.
,
2016
, “
Using a Surrogate Contact Pair to Evaluate Polyethylene Wear in Prosthetic Knee Joints
,”
J. Biomed. Mater. Res. B
,
104
(
1
), pp.
133
140
. 10.1002/jbm.b.33360
7.
Barnett
,
P. I.
,
McEwen
,
H. M. J.
,
Auger
,
D. D.
,
Stone
,
M. H.
,
Ingham
,
E.
, and
Fisher
,
J.
,
2002
, “
Investigation of Wear of Knee Prostheses in a New Displacement/Force-Controlled Simulator
,”
Proc. Inst. Mech. Eng. H
,
216
(
1
), pp.
51
61
. 10.1243/0954411021536289
8.
Ruggiero
,
A.
,
D׳Amato
,
R.
,
Gómez
,
E.
, and
Merola
,
M.
,
2016
, “
Experimental Comparison on Tribological Pairs UHMWPE/TIAL6V4 Alloy, UHMWPE/AISI316L Austenitic Stainless and UHMWPE/AL2O3 Ceramic, Under Dry and Lubricated Conditions
,”
Tribol. Int.
,
96
, pp.
349
360
. 10.1016/j.triboint.2015.12.041
9.
Ruggiero
,
A.
,
D’Amato
,
R.
, and
Gómez
,
E.
,
2015
, “
Experimental Analysis of Tribological Behavior of UHMWPE Against AISI420C and Against TiAl6V4 Alloy Under dry and Lubricated Conditions
,”
Tribol. Int.
,
92
, pp.
154
161
. 10.1016/j.triboint.2015.06.005
10.
ISO 14243-3:2004
,
2004
, “
Implants for Surgery—Wear of Total Knee-Joint Prostheses—Part 3: Loading and Displacement Parameters for Wear-Testing Machines With Displacement Control and Corresponding Environmental Conditions for Test
,”
ISO
.
11.
Patten
,
E. W.
,
Van Citters
,
D.
,
Ries
,
M. D.
, and
Pruitt
,
L. A.
,
2013
, “
Wear of UHMWPE From Sliding, Rolling, and Rotation in a Multidirectional Tribo-System
,”
Wear
,
304
(
1–2
), pp.
60
66
. 10.1016/j.wear.2013.04.017
12.
ISO 14243-3 2014
,
2014
, “
Implants for Surgery—Wear of Total Knee-Joint Prostheses—Part 3: Loading and Displacement Parameters for Wear-Testing Machines With Displacement Control and Corresponding Environmental Conditions for Test
,”
ISO
.
13.
Ngai
,
V.
, and
Wimmer
,
M. A.
,
2009
, “
Kinematic Evaluation of Cruciate-Retaining Total Knee Replacement Patients During Level Walking: a Comparison With the Displacement-Controlled ISO Standard
,”
J. Biomech.
,
42
(
14
), pp.
2363
2368
. 10.1016/j.jbiomech.2009.06.030
14.
Masouros
,
S. D.
,
Bull
,
A. M. J.
, and
Amis
,
A. A.
,
2010
, “
(i) Biomechanics of the Knee Joint
,”
Orthop. Trauma
,
24
(
2
), pp.
84
91
. 10.1016/j.mporth.2010.03.005
15.
Shenoy
,
R.
,
Pastides
,
P. S.
, and
Nathwani
,
D.
,
2013
, “
(iii) Biomechanics of the Knee and TKR
,”
Orthop. Trauma
,
27
(
6
), pp.
364
371
. 10.1016/j.mporth.2013.10.003
16.
Wimmer
,
M. A.
,
Schwenke
,
T.
, and
Ngai
,
V.
,
2009
, “
In-vivo Kinematics of Knee Prostheses Patients During Level Walking Compared with the ISO Force-Controlled Simulator Standard
,”
Proc. Inst. Mech. Eng. H
,
223
(
7
), pp.
889
896
. 10.1243/09544070jeim549
17.
Sutton
,
L. G.
,
Werner
,
F. W.
,
Haider
,
H.
,
Hamblin
,
T.
, and
Clabeaux
,
J. J.
,
2010
, “
In Vitro Response of the Natural Cadaver Knee to the Loading Profiles Specified in a Standard for Knee Implant Wear Testing
,”
J. Biomech.
,
43
(
11
), pp.
2203
2207
. 10.1016/j.jbiomech.2010.03.042
18.
Dennis
,
D. A.
,
Komistek
,
R. D.
, and
Mahfouz
,
M. R.
,
2003
, “
In Vivo Fluoroscopic Analysis of Fixed-Bearing Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
,
410
, pp.
114
130
. 10.1097/01.blo.0000062385.79828.72
19.
Fitzpatrick
,
C. K.
,
Komistek
,
R. D.
, and
Rullkoetter
,
P. J.
,
2014
, “
Developing Simulations to Reproduce in Vivo Fluoroscopy Kinematics in Total Knee Replacement Patients
,”
J. Biomech.
,
47
(
10
), pp.
2398
2405
. 10.1016/j.jbiomech.2014.04.024
20.
Delport
,
H. P.
,
Banks
,
S. A.
,
De Schepper
,
J.
, and
Bellemans
,
J.
,
2006
, “
A Kinematic Comparison of Fixed- and Mobile-Bearing Knee Replacements
,”
J. Bone Jt. Surg., [Br.]
,
88-B
(
8
), pp.
1016
1021
. 10.1302/0301-620X.88B8.17529
21.
Brockett
,
C. L.
,
Abdelgaied
,
A.
,
Haythornthwaite
,
T.
,
Hardaker
,
C.
,
Fisher
,
J.
, and
Jennings
,
L. M.
,
2016
, “
The Influence of Simulator Input Conditions on the Wear of Total Knee Replacements: An Experimental and Computational Study
,”
Proc. Inst. Mech. Eng. H
,
230
(
5
), pp.
429
439
. 10.1177/0954411916645134
22.
Kawanabe
,
K.
,
Clarke
,
I. C.
,
Tamura
,
J.
,
Akagi
,
M.
,
Good
,
V. D.
,
Williams
,
P. A.
, and
Yamamoto
,
K.
,
2001
, “
Effects of A–P Translation and Rotation on the Wear of UHMWPE in a Total Knee Joint Simulator
,”
J. Biomed. Mater. Res.
,
54
(
3
), pp.
400
406
. 10.1002/1097-4636(20010305)54:3<400::AID-JBM130>3.0.CO;2-Y
23.
Johnson
,
T. S.
,
Laurent
,
M. P.
,
Yao
,
J. Q.
, and
Gilbertson
,
L. N.
,
2001
, “
The Effect of Displacement Control Input Parameters on Tibiofemoral Prosthetic Knee Wear
,”
Wear
,
250
, pp.
222
226
. 10.1016/S0043-1648(01)00650-0
24.
Wang
,
X. H.
,
Zhang
,
W.
,
Song
,
D. Y.
,
Li
,
H.
,
Dong
,
X.
,
Zhang
,
M.
,
Zhao
,
F.
,
Jin
,
Z. M.
, and
Cheng
,
C. K.
,
2018
, “
The Impact of Variations in Input Directions According to ISO 14243 on Wearing of Knee Prostheses
,”
PLoS One
,
13
(
10
), p.
e0206496
. 10.1371/journal.pone.0206496
25.
Wang
,
A.
,
2001
, “
A Unified Theory of Wear for Ultra-High Molecular Weight
,”
Wear
,
248
(
1–2
), pp.
38
47
. 10.1016/S0043-1648(00)00522-6
26.
Wang
,
A.
,
Sun
,
D. C.
,
Yau
,
S. S.
,
Edwards
,
B.
,
Sokol
,
M.
,
Essner
,
A.
,
Polineni
,
V. K.
,
Stark
,
C.
, and
Dumbleton
,
J. H.
,
1997
, “
Orientation Softening in the Deformation and Wear of Ultra-High Molecular Weight Polyethylene
,”
Wear
,
203
, pp.
230
241
. 10.1016/s0043-1648(96)07362-0
27.
O’Brien
,
S. T.
,
Luo
,
Y.
, and
Brandt
,
J.-M.
,
2015
, “
In-vitro and in-Silico Investigations on the Influence of Contact Pressure on Cross-Linked Polyethylene Wear in Total Knee Replacements
,”
Wear
,
332–333
, pp.
687
693
. 10.1016/j.wear.2015.02.048
28.
O'Brien
,
S. T.
,
Bohm
,
E. R.
,
Petrak
,
M. J.
,
Wyss
,
U. P.
, and
Brandt
,
J.-M.
,
2014
, “
An Energy Dissipation and Cross Shear Time Dependent Computational Wear Model for the Analysis of Polyethylene Wear in Total Knee Replacements
,”
J. Biomech.
,
47
(
5
), pp.
1127
1133
. 10.1016/j.jbiomech.2013.12.017
29.
Kang
,
L.
,
Galvin
,
A. L.
,
Brown
,
T. D.
,
Jin
,
Z.
, and
Fisher
,
J.
,
2008
, “
Quantification of the Effect of Cross-Shear on the Wear of Conventional and Highly Cross-Linked UHMWPE
,”
J. Biomech.
,
41
(
2
), pp.
340
346
. 10.1016/j.jbiomech.2007.09.005
30.
Kang
,
L.
,
Galvin
,
A. L.
,
Fisher
,
J.
, and
Jin
,
Z.
,
2009
, “
Enhanced Computational Prediction of Polyethylene Wear in hip Joints by Incorporating Cross-Shear and Contact Pressure in Additional to Load and Sliding Distance: Effect of Head Diameter
,”
J. Biomech.
,
42
(
7
), pp.
912
918
. 10.1016/j.jbiomech.2009.01.005
31.
Abdelgaied
,
A.
,
Fisher
,
J.
, and
Jennings
,
L. M.
,
2018
, “
A Comprehensive Combined Experimental and Computational Framework for pre-Clinical Wear Simulation of Total Knee Replacements
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
282
291
. 10.1016/j.jmbbm.2017.11.022
32.
Abdelgaied
,
A.
,
Liu
,
F.
,
Brockett
,
C.
,
Jennings
,
L.
,
Fisher
,
J.
, and
Jin
,
Z.
,
2011
, “
Computational Wear Prediction of Artificial Knee Joints Based on a new Wear law and Formulation
,”
J. Biomech.
,
44
(
6
), pp.
1108
1116
. 10.1016/j.jbiomech.2011.01.027
33.
Zhang
,
J.
,
Chen
,
Z.
,
Wang
,
L.
,
Li
,
D.
, and
Jin
,
Z.
,
2017
, “
Load Application for the Contact Mechanics Analysis and Wear Prediction of Total Knee Replacement
,”
Proc. Inst. Mech. Eng. H
,
231
(
5
), pp.
444
454
. 10.1177/0954411917693880
34.
Zhang
,
J.
,
Chen
,
Z.
,
Wang
,
L.
,
Li
,
D.
, and
Jin
,
Z.
,
2017
, “
A Patient-Specific Wear Prediction Framework for an Artificial Knee Joint with Coupled Musculoskeletal Multibody-Dynamics and Finite Element Analysis
,”
Tribol. Int.
,
109
, pp.
382
389
. 10.1016/j.triboint.2016.10.050
35.
Lee
,
R. K.
,
Korduba
,
L. A.
, and
Wang
,
A.
,
2011
, “
An Improved Theoretical Model of Orientation Softening and Cross-Shear Wear of Ultra High Molecular Weight Polyethylene
,”
Wear
,
271
(
9–10
), pp.
2230
2233
. 10.1016/j.wear.2010.12.054
36.
Lee
,
K.-Y.
, and
Pienkowski
,
D.
,
1998
, “
Compressive Creep Characteristics of Extruded Ultrahigh-Molecular-Weight Polyethylene
,”
J. Biomed. Mater. Res.
,
39
, pp.
261
265
. 10.1002/(SICI)1097-4636(199802)39:2<261::AID-JBM13>3.0.CO;2-G
37.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
,
2002
, “
Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
,
35
(
2
), pp.
267
275
. 10.1016/s0021-9290(01)00179-8
38.
Kurtz
,
S. M.
,
Jewett
,
C. W.
,
Bergstrom
,
J. S.
,
Foulds
,
J. R.
, and
Edidin
,
A. A.
,
2002
, “
Miniature Specimen Shear Punch Test for UHMWPE Used in Total Joint Replacements
,”
Biomaterials
,
23
(
9
), pp.
1907
1919
. 1016/s0142-9612(01)00316-7
39.
Fregly
,
B. J.
,
Bei
,
Y.
, and
Sylvester
,
M. E.
,
2003
, “
Experimental Evaluation of an Elastic Foundation Model to Predict Contact Pressures in Knee Replacements
,”
J. Biomech.
,
36
(
11
), pp.
1659
1668
. 10.1016/s0021-9290(03)00176-3
40.
Carr
,
B. C.
, and
Goswami
,
T.
,
2009
, “
Knee Implants—Review of Models and Biomechanics
,”
Mater. Des.
,
30
(
2
), pp.
398
413
. 10.1016/j.matdes.2008.03.032
41.
Kawanabe
,
K.
,
Clarke
,
I. C.
,
Tamura
,
J.
,
Akagi
,
M.
,
Good
,
V. D.
,
Williams
,
P. A.
, and
Yamamoto
,
K.
,
2001
, “
Effects of A–P Translation and Rotation on the Wear of UHMWPE in a Total Knee Joint Simulator
,”
J. Biomed. Mater. Res. Part B
,
54
(
3
), pp.
400
406
.
42.
Garabédian
,
C.
,
Bigerelle
,
M.
,
Najjar
,
D.
, and
Migaud
,
H.
,
2017
, “
Wear Pattern on a Retrieved Total Knee Replacement: The “Fourth Body Abrasion"
,”
Biotribology
,
11
, pp.
29
43
. 10.1016/j.biotri.2017.05.003
43.
Rawal
,
B. R.
,
Yadav
,
A.
, and
Pare
,
V.
,
2016
, “
Life Estimation of Knee Joint Prosthesis by Combined Effect of Fatigue and Wear
,”
Procedia Technol.
,
23
, pp.
60
67
. 10.1016/j.protcy.2016.03.072
44.
Dressler
,
M. R.
,
Strickland
,
M. A.
,
Taylor
,
M.
,
Render
,
T. D.
, and
Ernsberger
,
C. N.
,
2011
, “
Predicting Wear of UHMWPE: Decreasing Wear Rate Following a Change in Direction
,”
Wear
,
271
(
11–12
), pp.
2879
2883
. 10.1016/j.wear.2011.06.006
45.
Knight
,
L. A.
,
Pal
,
S.
,
Coleman
,
J. C.
,
Bronson
,
F.
,
Haider
,
H.
,
Levine
,
D. L.
,
Taylor
,
M.
, and
Rullkoetter
,
P. J.
,
2007
, “
Comparison of Long-Term Numerical and Experimental Total Knee Replacement Wear During Simulated Gait Loading
,”
J. Biomech.
,
40
(
7
), pp.
1550
1558
. 10.1016/j.jbiomech.2006.07.027
46.
Strickland
,
M. A.
,
Dressler
,
M. R.
, and
Taylor
,
M.
,
2012
, “
Predicting Implant UHMWPE Wear in-Silico: A Robust, Adaptable Computational–Numerical Framework for Future Theoretical Models
,”
Wear
,
274–275
, pp.
100
108
. 10.1016/j.wear.2011.08.020
47.
Wimmer
,
M. A.
, and
Andriacchi
,
T. P.
,
1997
, “
Tractive Forces During Rolling Motion of the Knee: Implications for Wear in Total Knee Replacement
,”
J. Biomech.
,
30
(
2
), pp.
131
137
. 10.1016/S0021-9290(96)00112-1
48.
Wimmer
,
M. A.
,
Birken
,
L.
,
Sellenschloh
,
K.
, and
Schneider
,
E.
,
2013
, “
Damage due to Rolling in Total Knee Replacement—The Influence of Tractive Force
,”
Friction
,
1
(
2
), pp.
178
185
. 10.1007/s40544-013-0014-2
49.
Cornwall
,
G. B.
,
Bryant
,
J. T.
, and
Hansson
,
C. M.
,
2001
, “
The EVect of Kinematic Conditions on the Wear of Ultrahigh Molecular Weight Polyethylene (UHMWPE) in Orthopaedic Bearing Applications
,”
Proc. Inst. Mech. Eng. H
,
215
, pp.
95
106
. 10.1243/0954411011533454
You do not currently have access to this content.