The objectives of this investigation were to design and develop an experimental turbocharger test rig (TTR) to measure the shaft whirl of the rotating assembly and the axial and frictional loads experienced by the bearings. The TTR contains a ball bearing turbocharger (TC) that was instrumented and operated under various test conditions up to 55,000 rpm. In order to measure the thrust loads on the compressor and turbine sides, customized sensors were integrated into the TC housing. The anti-rotation (AR) pin that normally prevents the bearing cartridge from rotating was replaced with a custom-made load cell adapter system. This sensor was used to measure the frictional losses in the bearing cartridge without altering the operation of the TC. Proximity sensors (probes) were also installed in the compressor housing to monitor shaft whirl. Axial load results indicated that the compressor side bears most of the thrust load. As the backpressure or the speed of the TC was increased, the thrust load also increased. Frictional measurements from the AR pin sensor demonstrated low power losses in the ball bearing cartridge. For certain shaft speed ranges, the data from the sensors illustrated periodic trends in response to the subsynchronous whirl of the shaft.

References

References
1.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
,
Macmillan
,
London
.
2.
Wetzel
,
P.
,
2013
, “
Downspeeding a Light Duty Diesel Passenger Car With a Combined Supercharger and Turbocharger Boosting System to Improve Vehicle Drive Cycle Fuel Economy
,”
SAE Technical Paper 2013-01-0932
.
3.
Kirk
,
R. G.
,
Alsaeed
,
A. A.
, and
Gunter
,
E. J.
,
2007
, “
Stability Analysis of a High Speed Automotive Turbocharger
,”
Tribol. Trans.
,
50
(
3
), pp.
427
434
.
4.
Griffith
,
R. C.
,
Slaughter
,
S. E.
, and
Mavrosakis
,
P. E.
,
2007
, “
Applying Ball Bearings to the Series Turbochargers for the Caterpillar® Heavy-Duty On-Highway Truck Engines
,”
SAE Technical Paper 2007-01-4235
.
5.
Deligant
,
M.
,
Podevin
,
P.
, and
Descombes
,
G.
,
2012
, “
Experimental Identification of Turbocharger Mechanical Friction Losses
,”
Energy
,
39
(
1
), pp.
388
394
.
6.
Nguyen-Schäfer
,
H.
,
2012
,
Rotordynamics of Automotive Turbochargers
,
Springer
,
Heidelberg
.
7.
Sjöberg
,
E.
,
2013
, “
Friction Characterization of Turbocharger Bearings
,”
M.S. thesis
,
KTH Industrial Engineering and Management
,
Stockholm, Sweden
.
8.
Brouwer
,
M. D.
,
2015
, “
Dynamic Performance of Turbocharger Rotor-Bearing Systems
,”
Ph.D. dissertation
,
Purdue University
,
West Lafayette, IN
.
9.
Keller
,
R.
,
Scharrer
,
J.
, and
Pelletti
,
J.
,
1996
, “
Alternative Performance Turbocharger Bearing Design
,”
SAE Technical Paper 962500
.
10.
San Andrés
,
L.
,
Rivadeneira
,
J. C.
,
Gjika
,
K.
,
Groves
,
C.
, and
LaRue
,
G.
,
2007
, “
A Virtual Tool for Prediction of Turbocharger Nonlinear Dynamic Response: Validation Against Test Data
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1035
1046
.
11.
Miyashita
,
K.
,
Kurasawa
,
M.
,
Matsuoka
,
H.
,
Ikeya
,
N.
, and
Nakamura
,
F.
,
1987
, “
Development of High Efficiency Ball-Bearing Turbocharger
,”
SAE Technical Paper 870354
.
12.
Kingsbury
,
E. P.
,
1968
, “
Ball Motion in Angular Contact Bearings
,”
Wear
,
11
(
1
), pp.
41
50
.
13.
Wang
,
L.
,
Snidle
,
R. W.
, and
Gu
,
L.
,
2000
, “
Rolling Contact Silicon Nitride Bearing Technology: A Review of Recent Research
,”
Wear
,
246
(
1–2
), pp.
159
173
.
14.
Tanimoto
,
K.
,
Kajihara
,
K.
, and
Yanai
,
K.
,
2000
, “
Hybrid Ceramic Ball Bearings for Turbochargers
,”
SAE Technical Paper 2000-01-1339
.
15.
Liao
,
N. T.
, and
Lin
,
J. F.
,
2002
, “
Ball Bearing Skidding Under Radial and Axial Loads
,”
Mech. Mach. Theory
,
37
(
1
), pp.
91
113
.
16.
Ellis
,
E. E.
,
1970
, “
Misaligned Ball Bearings
,”
Tribol.
,
3
(
1
), pp.
29
38
.
17.
Zeidan
,
F. Y.
,
San Andrés
,
L.
, and
Vance
,
J. M.
,
1996
, “
Design and Application of Squeeze Film Dampers in Rotating Machinery
,”
Proceedings of the 25th Turbomachinery Symposium
,
Texas A&M University, Houston, TX
,
Sept. 17–19
, pp.
169
188
.
18.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2011
, “
Experimental and Analytical Investigation of High Speed Turbocharger Ball Bearings
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
122501
.
19.
Brouwer
,
M. D.
,
Sadeghi
,
F.
,
Lancaster
,
C.
,
Archer
,
J.
, and
Donaldson
,
J.
,
2013
, “
Whirl and Friction Characteristics of High Speed Floating Ring and Ball Bearing Turbochargers
,”
ASME J. Tribol.
,
135
(
4
), p.
041102
.
20.
Brouwer
,
M. D.
, and
Sadeghi
,
F.
,
2016
, “
Investigation of Turbocharger Dynamics Using a Combined Explicit Finite and Discrete Element Method Rotor–Cartridge Model
,”
ASME J. Tribol.
,
139
(
1
), p.
012201
.
21.
San Andrés
,
L.
,
Rivadeneira
,
J. C.
,
Gjika
,
K.
,
Groves
,
C.
, and
LaRue
,
G.
,
2007
, “
Rotordynamics of Small Turbochargers Supported on Floating Ring Bearings—Highlights in Bearing Analysis and Experimental Validation
,”
ASME J. Tribol.
,
129
(
2
), pp.
391
397
.
22.
San Andrés
,
L.
,
Rivadeneira
,
J. C.
,
Chinta
,
M.
,
Gjika
,
K.
, and
LaRue
,
G.
,
2007
, “
Nonlinear Rotordynamics of Automotive Turbochargers: Predictions and Comparisons to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
488
493
.
23.
Kirk
,
R. G.
,
Alsaeed
,
A.
,
Liptrap
,
J.
,
Lindsey
,
C.
,
Sutherland
,
D.
,
Dillon
,
B.
,
Saunders
,
E.
,
Chappell
,
M.
,
Nawshin
,
S.
,
Christian
,
E.
,
Ellis
,
A.
,
Mondschein
,
B.
,
Oliver
,
J.
, and
Sterling
,
J.
,
2008
, “
Experimental Test Results for Vibration of a High Speed Diesel Engine Turbocharger
,”
Tribol. Trans.
,
51
(
4
), pp.
422
427
.
24.
Kirk
,
R. G.
,
Kornhauser
,
A. A.
,
Sterling
,
J.
, and
Alsaeed
,
A.
,
2010
, “
Turbocharger On-Engine Experimental Vibration Testing
,”
J. Vib. Control
,
16
(
3
), pp.
343
355
.
25.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Tiseira
,
A.
,
García-Cuevas
,
L. M.
, and
Lefebvre
,
A.
,
2013
, “
Theoretical and Experimental Study of Mechanical Losses in Automotive Turbochargers
,”
Energy
,
55
, pp.
888
898
.
26.
Deligant
,
M.
,
Podevin
,
P.
, and
Clenci
,
A.
,
2010
, “
Mechanical Power Losses of Turbocharger at Low Speeds
,”
Scientific Bulletin of University of Pitesti, Automotive Series
,
20
(
B
), pp.
33
38
.
27.
Deligant
,
M.
,
Podevin
,
P.
,
Descombes
,
G.
,
Lamquin
,
T.
,
Vidal
,
F.
, and
Marchal
,
A.
,
2010
, “
Experimental Study of Turbocharger’s Performances at Low Speeds
,”
ASME 2010 Internal Combustion Engine Division Fall Technical Conference
,
San Antonio, TX
,
Sept. 12–15
, pp.
911
918
.
28.
Lee
,
I.-B.
,
Hong
,
S.-K.
, and
Choi
,
B.-L.
,
2018
, “
Investigation of the Axial Thrust Load Using Numerical and Experimental Techniques During Turbocharger Operation
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
232
(
6
), pp.
755
765
.
29.
Gjika
,
K.
, and
LaRue
,
G. D.
,
2008
, “
Axial Load Control on High-Speed Turbochargers: Test and Prediction
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
, pp.
705
712
.
30.
Lamquin
,
T.
, and
Gjika
,
K.
,
2009
, “
Power Losses Identification on Turbocharger Hydrodynamic Bearing Systems: Test and Prediction
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
153
162
.
You do not currently have access to this content.