In this paper, the antiwear and antifriction performance of MoS2 nanoparticle in castor oil was studied. The ball-on-disc tests were performed for different concentrations of MoS2 nanoparticle. Coefficient of friction, wear loss, and worn surface morphology were investigated. The results show that MoS2 nanoparticle could reduce the possibility of asperities direct contact, resulting in the reduction of the coefficient of friction and adhesive wear. However, MoS2 nanoparticle in excessive concentration could agglomerate into large particles, playing the role of an abrasive particle, which reduces the beneficial effects of MoS2 nanoparticle.

References

References
1.
Sgroi
,
M.
,
Gili
,
F.
,
Mangherini
,
D.
,
Lahouij
,
I.
,
Dassenoy
,
F.
,
Garcia
,
I.
,
Odriozola
,
I.
, and
Kraft
,
G.
,
2015
, “
Friction Reduction Benefits in Valve-Train System Using IF-MoS2 Added Engine Oil
,”
Tribol. Trans.
,
58
(
2
), pp.
207
214
.
2.
Wu
,
H.
,
Wang
,
L.
,
Johnson
,
B.
,
Yang
,
S.
,
Zhang
,
J.
, and
Dong
,
G.
,
2017
, “
Investigation on the Lubrication Advantages of MoS2 Nanosheets Compared With ZDDP Using Block-on-Ring Tests
,”
Wear
,
394–395
, pp.
40
49
.
3.
Sgroi
,
M. F.
,
Asti
,
M.
,
Gili
,
F.
,
Deorsola
,
F. A.
,
Bensaid
,
S.
,
Fino
,
D.
,
Kraft
,
G.
,
Garcia
,
I.
, and
Dassenoy
,
F.
,
2017
, “
Engine Bench and Road Testing of an Engine Oil Containing MoS2 Particles as Nano-Additive for Friction Reduction
,”
Tribol. Int.
,
105
, pp.
317
325
.
4.
Roberts
,
E. W.
,
1990
, “
Thin Solid Lubricant Films in Space
,”
Tribol. Int.
,
23
(
2
), pp.
95
104
.
5.
Tannous
,
J.
,
Dassenoy
,
F.
,
Lahouij
,
I.
,
Mogne
,
T. L.
,
Vacher
,
B.
,
Bruhács
,
A.
, and
Tremel
,
W.
,
2011
, “
Understanding the Tribochemical Mechanisms of IF-MoS2 Nanoparticles Under Boundary Lubrication
,”
Tribol. Lett.
,
41
(
1
), pp.
55
64
.
6.
Sgroi
,
M.
,
Gili
,
F.
,
Mangherini
,
D.
,
Lahouij
,
I.
,
Dassenoy
,
F.
,
Garcia
,
I.
,
Odriozola
,
I.
, and
Kraft
,
G.
,
2015
, “
Friction Reduction Benefits in Valve-Train System Using IF-MoS2 Added Engine Oil
,”
Tribol. Trans.
,
58
(
2
), pp.
207
214
.
7.
Zhang
,
W.
,
Demydov
,
D.
,
Jahan
,
M. P.
,
Mistry
,
K.
,
Erdemir
,
A.
, and
Malshe
,
A. P.
,
2012
, “
Fundamental Understanding of the Tribological and Thermal Behavior of Ag-MoS2 Nanoparticle-Based Multi-Component Lubricating System
,”
Wear
,
288
(
3
), pp.
9
16
.
8.
Kalin
,
M.
,
Kogovšek
,
J.
, and
Remškar
,
M.
,
2013
, “
Nanoparticles as Novel Lubricating Additives in a Green, Physically Based Lubrication Technology for DLC Coatings
,”
Wear
,
303
(
1–2
), pp.
480
485
.
9.
Rapoport
,
L.
,
Feldman
,
Y.
,
Homyonfer
,
M.
,
Cohen
,
H.
,
Sloan
,
J.
,
Hutchison
,
J. L.
, and
Tenne
,
R.
,
1999
, “
Inorganic Fullerene-Like Material as Additives to Lubricants: Structure–Function Relationship
,”
Wear
,
225–229
(
4
), pp.
975
982
.
10.
Lahouij
,
I.
,
Dassenoy
,
F.
,
Vacher
,
B.
, and
Martin
,
J. M.
,
2012
, “
Real Time TEM Imaging of Compression and Shear of Single Fullerene-Like MoS2 Nanoparticle
,”
Tribol. Lett.
,
45
(
1
), pp.
131
141
.
11.
Rosentsveig
,
R.
,
Gorodnev
,
A.
,
Feuerstein
,
N.
,
Friedman
,
H.
,
Zak
,
A.
,
Fleischer
,
N.
,
Tannous
,
J.
,
Dassenoy
,
F.
, and
Tenne
,
R.
,
2009
, “
Fullerene-Like MoS2 Nanoparticles and Their Tribological Behavior
,”
Tribol. Lett.
,
36
(
2
), pp.
175
182
.
12.
Chhowalla
,
M.
, and
Amaratunga
,
G. A. J.
,
2000
, “
Thin Films of Fullerene-Like MoS2 Nanoparticles With Ultra-Low Friction and Wear
,”
Nature
,
407
(
6801
), p.
164
.
13.
Demas
,
N. G.
,
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Fenske
,
G. R.
,
2012
, “
Tribological Effects of BN and MoS2 Nanoparticles Added to Polyalphaolefin Oil in Piston Skirt/Cylinder Liner Tests
,”
Tribol. Lett.
,
47
(
1
), pp.
91
102
.
14.
Ochoa
,
E. D. L. G.
,
Otero
,
J. E.
,
Tanarro
,
E. C.
,
Munoz-Guijosa
,
J. M.
,
López
,
B. D. R.
, and
Cordero
,
C. A.
,
2015
, “
Analysis of the Effect of Different Types of Additives Added to a Low Viscosity Polyalphaolefin Base on Micropitting
,”
Wear
,
322–323
, pp.
238
250
.
15.
Ghaednia
,
H.
,
Jackson
,
R. L.
, and
Khodadadi
,
J. M.
,
2015
, “
Experimental Analysis of Stable CuO Nanoparticle Enhanced Lubricants
,”
J. Exp. Nanosci.
,
10
(
1
), pp.
1
18
.
16.
Wan
,
Q.
,
Jin
,
Y.
,
Sun
,
P.
, and
Ding
,
Y.
,
2015
, “
Tribological Behaviour of a Lubricant Oil Containing Boron Nitride Nanoparticles
,”
Procedia Eng.
,
102
, pp.
1038
1045
.
17.
Peńa-Parás
,
L.
,
Maldonado-Cortés
,
D.
,
García
,
P.
,
Irigoyen
,
M.
,
Taha-Tijerina
,
J.
, and
Guerra
,
J.
,
2017
, “
Tribological Performance of Halloysite Clay Nanotubes as Green Lubricant Additives
,”
Wear
,
376–377
(
Part A
), pp.
885
892
.
18.
Sia
,
S. Y.
,
Bassyony
,
E. Z.
, and
Sarhan
,
A. A. D.
,
2014
, “
Development of SiO2 Nanolubrication System to Be Used in Sliding Bearings
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
), pp.
1277
1284
.
You do not currently have access to this content.