To explore the recursive characteristics of a running-in attractor, recurrence plot (RP) and recursive parameters are used to investigate the dynamic features of the structure. The running-in attractor is constructed based on friction noise signals generated from the ring-on-disk wear experiments. The RPs of the running-in attractor are then reproduced in a two-dimensional space. Recursive parameters, recurrence rate (RR), entropy (ENTR), and trend of recurrence (RT) are calculated. Results show that the RP evolves from a disrupted pattern to a homogeneous pattern and then returns to a disrupted pattern in the entire wear process, corresponding to the “formation–stabilization–disappearance” stage of the running-in attractor. The RR and ENTR of the running-in attractor sharply increase at first, remain steady, and then sharply decrease. Moreover, the inclination of RT in the normal wear process is smaller than those in the other two processes. This observation reveals that the running-in attractor exhibits high stability and complexity. This finding may contribute to the running-in state identification, process prediction, and control.

References

References
1.
Urbakh
,
M.
,
Klafter
,
J.
,
Gourdon
,
D.
, and
Israelachvili
,
J.
,
2004
, “
The Nonlinear Nature of Friction
,”
Nature
,
430
(
6999
), pp.
525
528
.
2.
Zhu
,
H.
, and
Ge
,
S. R.
,
2004
, “
Chaotic Characteristics of Tribological Systems
,”
Chinese J. Mech. Eng.
,
40
(
12
), pp.
10
13
.
3.
Sun
,
D.
,
Li
,
G.
,
Wei
,
H.
, and
Liao
,
H.
,
2015
, “
Experimental Study on the Chaotic Attractor Evolvement of the Friction Vibration in a Running-in Process
,”
Tribol. Int.
,
88
, pp.
290
297
.
4.
Liu
,
T.
,
Li
,
G.
,
Wei
,
H.
, and
Sun
,
D.
,
2016
, “
Experimental Observation of Cross Correlation Between Tangential Friction Vibration and Normal Friction Vibration in a Running-in Process
,”
Tribol. Int.
,
97
, pp.
77
88
.
5.
Xia
,
X. T.
,
Lv
,
T. M.
, and
Meng
,
F. N.
,
2010
, “
Chaotic Characteristic and Nonlinear Dynamic Performance of Rolling Bearing Friction Torque
,”
Appl. Mech. Mater.
,
26–28
(
1–2
), pp.
88
92
.
6.
Zhou
,
Y. K.
,
Zhu
,
H.
,
Zuo
,
X.
, and
Yang
,
J.
,
2014
, “
Chaotic Characteristics of Measured Temperature During Sliding Friction
,”
Wear
,
317
(
1–2
), pp.
17
25
.
7.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G. D.
,
Zhou
,
Y. K.
, and
Zuo
,
X.
,
2017
, “
Chaotic Characteristics and Attractor Evolution of Friction Noise During Friction Process
,”
Friction
,
6
(
1
), pp.
1
15
.
8.
Zhu
,
H.
,
Ge
,
S. R.
,
Li
,
G.
, and
Lv
,
L.
,
2007
, “
Test of Running-in Process and Preliminary Analysis of Running-in Attractors
,”
Lubr. Eng.
,
32
(
1
), pp.
1
3
.
9.
Ge
,
S. R.
, and
Zhu
,
H.
,
2008
, “
Evolvement Rule of Running-in Attractor
,”
Chinese J. Mech. Eng.
,
44
(
3
), pp.
99
104
.
10.
Eckmann
,
J. P.
,
Kanphorst
,
O. S.
, and
Ruelle
,
D.
,
1987
, “
Recurrence Plots of Dynamical Systems
,”
Europhys. Lett.
,
4
(
9
), pp.
973
977
.
11.
Zbilut
,
J. P.
, and,
Webber
, C. L.
, Jr
,
1992
, “
Embeddings and Delays as Derived From Quantification of Recurrence Plots
,”
Phys. Lett. A.
,
171
(
3–4
), pp.
199
203
.
12.
Theil
,
M.
,
Romano
,
M.
, and
Kurths
,
J.
,
2004
, “
How Much Information Is Contained in a Recurrence Plot
,”
Phys. Lett. A
,
330
(
5
), pp.
343
349
.
13.
Firooz
,
S. G.
,
Almasganj
,
F.
, and
Shekofteh
,
Y.
,
2016
, “
Improvement of Automatic Speech Recognition Systems Via Nonlinear Dynamical Features Evaluated From the Recurrence Plot of Speech Signals
,”
Comput. Electr. Eng.
,
58
, pp.
215
226
.
14.
Marwan
,
N.
,
Kurths
,
J.
, and
Foerster
,
S.
,
2015
, “
Analysing Spatially Extended High-Dimensional Dynamics by Recurrence Plots
,”
Phys. Lett. A
,
379
(
10–11
), pp.
894
900
.
15.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2015
, “
Nonlinear Transient and Chaotic Interactions in Disc Brake Squeal
,”
J. Sound. Vib.
,
342
, pp.
272
289
.
16.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2011
, “
Chaos in Brake Squeal Noise
,”
J. Sound. Vib.
,
330
(
5
), pp.
955
975
.
17.
Elmaian
,
A.
,
Gautier
,
F.
,
Pezerat
,
C.
, and
Duffal
,
J. M.
,
2014
, “
How Can Automotive Friction-Induced Noises Be Related to Physical Mechanisms?
,”
Appl. Acoust.
,
76
, pp.
391
401
.
18.
Kang
,
J.
,
2015
, “
The Onset Condition of Friction Noise in Ball Joint Under Concentric Loading
,”
Appl. Acoust.
,
89
(
89
), pp.
57
61
.
19.
Huang
,
N. E.
,
Shen
,
Z.
,
Steven
,
R. L.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. Lond. A
,
454
(
1971
), pp.
903
995
.
20.
Marwan
,
N.
,
Romano
,
M. C.
,
Theil
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep
,
438
(
5–6
), pp.
237
329
.
21.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), pp.
1134
1140
.
22.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
Deluca
,
C. J.
,
1994
, “
Reconstruction Expansion as a Geometry-Based Framework for Choosing Proper Delay Times
,”
Physica D
,
73
(
1–2
), pp.
82
98
.
23.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D. I.
,
1992
, “
Determining Embedding Dimension for Phase Space Reconstruction Using a Geometrical Reconstruction
,”
Phys. Rev. A.
,
45
(
6
), pp.
3403
3411
.
24.
Mindlin
,
G. M.
, and
Gilmore
,
R.
,
1992
, “
Topological Analysis and Synthesis of Chaotic Time Series
,”
Physica D
,
58
(
1–4
), pp.
229
242
.
25.
Eckmann
,
J. P.
, and
Ruelle
,
D.
,
1992
, “
Fundamental Limitations of Estimating Dimensions and Lyapunov Exponents in Dynamical Systems
,”
Physica D
,
6
(
2–3
), pp.
185
187
.
26.
Havstad
,
J. W.
, and
Ehlers
,
C. L.
,
1989
, “
Attractor Dimension of Nonstationary Dynamical Systems From Small Data Sets
,”
Phys. Rev. A.
,
39
(
2
), pp.
845
853
.
27.
Yokoya
,
N.
,
Yamamoto
,
K.
, and
Funakubo
,
N.
,
1989
, “
Fractal-Based Analysis and Interpolation of 3D Natural Surfaces and Their Applications to Terrain Modeling
,”
Comput. Vision Graphics Image Process.
,
46
(
3
), pp.
284
302
.
28.
Maragos
,
P.
, and
Sun
,
F. K.
,
1993
, “
Measuring the Fractal Dimension of Signals
,”
IEEE. Trans. Signal. Proc.
,
41
(
1
), pp.
108
121
.
29.
Yang
,
H. Y.
,
Ye
,
H.
,
Wang
,
G. Z.
, and
Pan
,
G. D.
,
2008
, “
Identification of Scaling Regime in Chaotic Correlation Dimension Calculation
,”
Third IEEE Conference on Industrial Electronics and Applications
, Singapore, June 3–5, pp.
1383
1387
.
You do not currently have access to this content.