A five-level four-factor central composite design multivariable model was constructed for the evaluation of the combined effect of operating parameters such as percentage reinforcement (0–10%), load (5–25 N), sliding speed (1–5 m/s), sliding distance (500–2500 m) on the wear rate of mica reinforced metal matrix composites. The microwave-assisted powder metallurgy technique was used to fabricate the composites. The wear tests were performed according to statistical designs to develop an empirical predictive regression model. The interaction of percentage reinforcement and sliding distance indicated the significant impact on wear rate. The statistical analysis confirms the optimum composition of mica blends leading to the best possible wear rate. No rapid wear region was identifiable in the morphology of worn composite surfaces.

References

References
1.
Lindsay
,
B.
,
Ryan
,
G.
, and
Bill
,
V.
,
2016
, “
Lightweighting: What's Next?
,”
Mobility Eng.
,
3
(
4
), pp.
41
45
.
2.
William
,
J. J.
, and
Krajewski
,
P. E.
,
2017
, “
Towards Magnesium Alloys for High-Volume Automotive Applications
,”
Scr. Mater.
,
128
, pp.
107
112
.
3.
Stéphane
,
G.
,
Wolfgang
,
B.
, and
Dirk
,
S.
,
2007
, “
Yielding of Magnesium From Single Crystal to Polycrystalline Aggregates
,”
Int. J. Plast.
,
23
(
12
), pp.
1957
1978
.
4.
Glover
,
A. S.
,
Rogers
,
W. Z.
, and
Barton
,
J. E.
,
2012
, “
Granitic Pegmatites: Storehouses of Industrial Minerals
,”
Elements
,
8
(
4
), pp.
269
273
.
5.
Deonath
,
Biswas
,
S. K.
, and
Rohatgi
,
P. K.
,
1980
, “
Wear Characteristics and Bearing Performance of Aluminium-Mica Particulate Composite Material
,”
Wear
,
60
(
1
), pp.
61
73
.
6.
Rajmohan
,
T.
,
Palanikumar
,
K.
, and
Ranganathan
,
S.
,
2013
, “
Evaluation of Mechanical and Wear Properties of Hybrid Aluminium Matrix Composites
,”
Trans. Nonferrous Mater. Soc. China.
,
23
(
9
), pp.
2509
2517
.
7.
Deo
,
N.
,
Bhat
,
R. T.
, and
Rohatgi
,
P. K.
,
1980
, “
Preparation of Cast Aluminium Alloy-Mica Particle Composites
,”
J. Mater. Sci.
,
15
, pp.
1241
1251
.https://ntrs.nasa.gov/search.jsp?R=19800048462
8.
Lim
,
C. Y. H.
,
Leo
,
D. K.
,
Ang
,
J. J. S.
, and
Gupta
,
M.
,
2005
, “
Wear of Magnesium Composites Reinforced With Nano-Sized Alumina Particulates
,”
Wear
,
259
(
1–6
), pp.
620
625
.
9.
Fida Hassan
,
S.
,
Al-Qutub
,
A. M.
,
Tun
,
K. S.
, and
Gupta
,
M.
,
2015
, “
Study of Wear Mechanisms of a Novel Magnesium Based Hybrid Nanocomposite
,”
ASME J. Tribol.
,
137
(
1
), p.
011601
.
10.
Selvam
,
B.
,
Marimuthu
,
P.
,
Narayanasamy
,
R.
,
Anandakrishnan
,
V.
,
Tun
,
K. S.
,
Gupta
,
M.
, and
Kamaraj
,
M.
,
2014
, “
Dry Sliding Wear Behavior of Zinc Oxide Reinforced Magnesium Matrix Nano-Composites
,”
Mater. Des.
,
58
, pp.
475
481
.
11.
Spuzic
,
S.
,
Zec
,
M.
,
Abhary
,
K.
,
Ghomashchi
,
R.
, and
Reid
,
I.
,
1997
, “
Fractional Design of Experiments Applied to a Wear Simulation
,”
Wear
,
212
(
1
), pp.
131
139
.
12.
Sakip
,
K.
,
Ferit
,
F.
,
Ramazan
,
K.
, and
Omer
,
S.
,
2012
, “
Experimental Optimization of Dry Sliding Wear Behavior of in Situ AlB2/Al Composite Based on Taguchi's Method
,”
Mater. Des.
,
42
, pp.
124
130
.
13.
Sahin
,
Y.
,
2005
, “
The Prediction of Wear Resistance Model for the Metal Matrix Composites
,”
Wear
,
258
(
11–12
), pp.
1717
1722
.
14.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
Wiley
,
New York
.
15.
Thompson
,
D.
,
1982
, “
Response Surface Experimentation1
,”
J. Food Process. Preserv.
,
6
(
3
), pp.
155
188
.
16.
Gupta
,
M.
, and
Wong
,
W. L. E.
,
2015
, “
Magnesium-Based Nanocomposites, Lightweight Materials of the Future
,”
Mater. Charact.
,
105
, pp.
30
46
.
17.
Gupta
,
M.
, and
Nai Mui Ling
,
S.
,
2011
,
Magnesium Alloys, and Magnesium Composites
,
Wiley
,
Hoboken, NJ
.
18.
Tedeschi
,
L. O.
,
2006
, “
Assessment of the Adequacy of Mathematical Models
,”
Agric. Syst.
,
89
(
2–3
), pp.
225
247
.
19.
Li
,
C. X.
, and
Bell
,
T.
,
2004
, “
Sliding Wear Properties of Active Screen Plasma Nitride 316 Austenitic Stainless Steel
,”
Wear
,
256
(
11–12
), pp.
1144
1152
.
20.
Wilson
,
S.
, and
Alpas
,
A. T.
,
1997
, “
Wear Mechanism Maps for Metal Matrix Composites
,”
Wear
,
212
(
1
), pp.
41
49
.
21.
Föhl
,
J.
,
Weissenberg
,
T.
, and
Wiedemeyer
,
J.
,
1989
, “
General Aspects for Tribological Applications of Hard Particle Coatings
,”
Wear
,
130
(
2
), pp.
275
288
.
22.
Habibnejad-Korayem
,
M.
,
Mahmudi
,
R.
,
Ghasemia
,
H. M.
, and
Poole
,
W. J.
,
2010
, “
Tribological Behavior of Pure Mg and AZ31 Magnesium Alloy Strengthened by Al2O3 Nano-Particles
,”
Wear
,
268
(
3–4
), pp.
405
412
.
23.
Jiju
,
A.
,
2003
,
Design of Experiments for Engineers and Scientists
,
Elsevier Ltd.
,
Burlington, MA
.
24.
Deonath, Rohatgi, P. K.
, 1981, “
Cast Aluminium Alloy Composites Containing Copper-Coated Round Mica Particles
,”
J. Mater. Sci.
,
16
(1), pp. 1599–1606.
You do not currently have access to this content.