Polyether ether ketone (PEEK) and its composites are recognized as alternative bearing materials for use in arthroplasty because of their excellent mechanical properties. In this paper, torsional friction tests of PEEK against the CoCrMo alloy, simulating the contact mode between the prosthesis tibia and femur, were carried out under a 25% calf serum solution in a Leeds Prosim knee simulator. The torsional friction behavior of PEEK against the CoCrMo alloy was investigated under various normal loads (1000 N, 1600 N and 2200 N), torsional angular displacement amplitudes (±1 deg, ±3 deg, and ±5 deg), and the number of cycles (7500, 15,000, and 30,000). The torsional friction characteristics and damage mechanism are discussed. The results show that PEEK exhibited low friction coefficient under the different conditions. With increases in the torsional angle and normal load, three types of torque/angular displacement amplitude (Tθ) curves (i.e., linear, parallelogram, and elliptical loops) were observed and analyzed during the process of torsional friction. With the increase of the torsional angle, the coefficient of friction decreases. And the contact states change from the partial slip regime to the slip regime. The greater the torsional angle displacement, the more severe the damage to the PEEK surface. With an increase in the normal load, the wear scars increased. The wear depth is deepened and the width is widened, and the wear gradually becomes serious with an increase in the load. The small load is more likely to cause damage to the central area of PEEK, and the larger load causes more serious damage to the marginal region. The central and marginal regions of the PEEK sample have different wear characteristics. The worn surfaces of the central regions were characterized by convex ridges resulting from plastic deformation, while curved ploughs and fatigue peeling appeared in the marginal region. The wear mechanism of PEEK in the central region is plastic deformation, while fatigue wear and abrasive wear mainly appeared in the marginal region.

References

References
1.
Argenson
,
J. N.
,
Boisgard
,
S.
,
Parratte
,
S.
,
Descamps
,
S.
,
Bercovy
,
M.
,
Bonnevialle
,
P.
,
Briard
,
J. L.
,
Brilhault
,
J.
,
Chouteau
,
J.
,
Nizard
,
R.
,
Saragaglia
,
D.
, and
Servien
,
E.
,
2013
, “
Survival Analysis of Total Knee Arthroplasty at a Minimum 10 Years' Follow-Up: A Multicenter French Nationwide Study Including 846 Cases
,”
Orthop. Traumatol-Sur.
,
99
(
4
), pp.
385
390
.
2.
Engh
,
C. A.
,
Hopper
,
R. H.
,
Huynh
,
C.
,
Ho
,
H.
,
Sritulanondha
,
S.
, and
Engh
,
C. A.
,
2012
, “
A Prospective, Randomized Study of Cross-Linked and Non–Cross-Linked Polyethylene for Total Hip Arthroplasty at 10-Year Follow-Up
,”
J. Arthroplasty
,
27
(
8
), pp.
2
7.e1
.
3.
Makela
,
K. T.
,
Matilainen
,
M.
,
Pulkkinen
,
P.
,
Fenstad
,
A. M.
,
Havelin
,
L.
,
Engesaeter
,
L.
,
Furnes
,
O.
,
Pedersen
,
A. B.
,
Overgaard
,
S.
,
Karrholm
,
J.
,
Malchau
,
H.
,
Garellick
,
G.
,
Ranstam
,
J.
, and
Eskelinen
,
A.
,
2014
, “
Failure Rate of Cemented and Uncemented Total Hip Replacements: Register Study of Combined Nordic Database of Four Nations
,”
Bmj
,
348
, p.
f7592
.
4.
Carr
,
A. J.
,
Robertsson
,
O.
,
Graves
,
S.
,
Price
,
A. J.
,
Arden
,
N. K.
,
Judge
,
A.
, and
Beard
,
D. J.
,
2012
, “
Knee Replacement
,”
Lancet
,
379
(
9823
), pp.
1331
1340
.
5.
Kurtz
,
S.
,
Ong
,
K.
,
Lau
,
E.
,
Mowat
,
F.
, and
Halpern
,
M.
,
2007
, “
Projections of Primary and Revision Hip and Knee Arthroplasty in the United States From 2005 to 2030
,”
J. Bone Jt. Surg.
,
89
(
4
), pp.
780
785
.
6.
Schmalzried
,
T. P.
,
Szuszczewicz
,
E. S.
,
Northfield
,
M. R.
,
Akizuki
,
K. H.
,
Frankel
,
R. E.
,
Belcher
,
G.
, and
Amstutz
,
H. C.
,
1998
, “
Quantitative Assessment of Walking Activity After Total Hip or Knee Replacement
,”
J. Bone Jt. Surg
,
80
(
1
), pp.
54
59
.
7.
Kemmish
,
D.
,
2010
,
Update on the Technology and Applications of Polyaryletherketones
,
Smithers Rapra Technology
, Shrewsbury,UK.
8.
Schwitalla
,
A.
, and
Muller
,
W. D.
,
2013
, “
PEEK Dental Implants: A Review of the Literature
,”
J. Oral. Implantol.
,
39
(
6
), pp.
743
749
.
9.
Friedrich
,
K.
,
Sue
,
H. J.
,
Liu
,
P.
, and
Almajid
,
A. A.
,
2011
, “
Scratch Resistance of High Performance Polymers
,”
Tribol. Int.
,
44
(
9
), pp.
1032
1046
.
10.
Stratton-Powell
,
A. A.
,
Pasko
,
K. M.
,
Brockett
,
C. L.
, and
Tipper
,
J. L.
,
2016
, “
The Biologic Response to Polyetheretherketone (PEEK) Wear Particles in Total Joint Replacement: A Systematic Review
,”
Clin. Orthop. Relat. R
,
474
(
11
), pp.
1
11
.
11.
Katzer
,
A.
,
Marquardt
,
H.
,
Westendorf
,
J.
,
Wening
,
J. V.
, and
von Foerster
,
G.
,
2002
, “
Polyetheretherketone–Cytotoxicity and Mutagenicity In Vitro
,”
Biomaterials
,
23
(
8
), pp.
1749
1759
.
12.
Morrison
,
C.
,
Macnair
,
R.
,
MacDonald
,
C.
,
Wykman
,
A.
,
Goldie
,
I.
, and
Grant
,
M. H.
,
1995
, “
In Vitro Biocompatibility Testing of Polymers for Orthopaedic Implants Using Cultured Fibroblasts and Osteoblasts
,”
Biomaterials
,
16
(
13
), pp.
987
992
.
13.
Mastronardi
,
L.
,
Ducati
,
A.
, and
Ferrante
,
L.
,
2006
, “
Anterior Cervical Fusion With Polyetheretherketone (PEEK) Cages in the Treatment of Degenerative Disc Disease. Preliminary Observations in 36 Consecutive Cases With a Minimum 12-Month Follow-Up
,”
Acta Neurochir.
,
148
(
3
), pp.
307
312
.
14.
Wang
,
A.
,
Lin
,
R.
,
Polineni
,
V. K.
,
Essner
,
A.
,
Stark
,
C.
, and
Dumbleton
,
J. H.
,
1998
, “
Carbon Fiber Reinforced Polyether Ether Ketone Composite as a Bearing Surface for Total Hip Replacement
,”
Tribol. Int.
,
31
(
11
), pp.
661
667
.
15.
Wang
,
A.
,
Lin
,
R.
,
Stark
,
C.
, and
Dumbleton
,
J. H.
,
1999
, “
Suitability and Limitations of Carbon Fiber Reinforced PEEK Composites as Bearing Surfaces for Total Joint Replacements
,”
Wears
,
225–229
(
4
), pp.
724
727
.
16.
Cowie
,
R. M.
,
Briscoe
,
A.
,
Fisher
,
J.
, and
Jennings
,
L. M.
,
2016
, “
PEEK-OPTIMATM as an Alternative to Cobalt Chrome in the Femoral Component of Total Knee Replacement: A Preliminary Study
,”
Proc. Inst. Mech. Eng. H
,
230
(
11
), pp.
1008
1015
.
17.
Rankin
,
K.
,
2016
, “
Evaluation of Polyetheretherketone as a Candidate Material for Cemented Total Knee Replacement
,” Ph.D. thesis, University of Southampton, Southampton, UK.
18.
Scholes
,
S. C.
, and
Unsworth
,
A.
,
2009
, “
Wear Studies on the Likely Performance of CFR-PEEK/CoCrMo for Use as Artificial Joint Bearing Materials
,”
J. Mater. Sci-Mater. Med.
,
20
(
1
), pp.
163
170
.
19.
Haider
,
H.
,
Weisenburger
,
J. N.
, and
Garvin
,
K. L.
,
2016
, “
Simultaneous Measurement of Friction and Wear in Hip Simulators
,”
Proc. Inst. Mech. Eng. H-J. Eng.
,
230
(
5
), p.
373
.
20.
Brockett
,
C. L.
,
John
,
G.
,
Williams
,
S.
,
Jin
,
Z.
,
Isaac
,
G. H.
, and
Fisher
,
J.
,
2012
, “
Wear of Ceramic-on-Carbon Fiber-Reinforced Poly-Ether Ether Ketone Hip Replacements
,”
J. Biomed. Mater. Res. B
,
100
(
6
), pp.
1459
1465
.
21.
Saikko
,
V.
, and
Ahlroos
,
T.
,
2000
, “
Wear Simulation of UHMWPE for Total Hip Replacement With a Multidirectional Motion Pin-on-Disk Device: Effects of Counterface Material, Contact Area, and Lubricant
,”
J. Biomed. Mater. Res.
,
49
(
2
), pp.
147
154
.
22.
Zhang
,
G.
,
Liao
,
H.
,
Li
,
H.
,
Mateus
,
C.
,
Bordes
,
J. M.
, and
Coddet
,
C.
,
2006
, “
On Dry Sliding Friction and Wear Behaviour of PEEK and PEEK/SiC-Composite Coatings
,”
Wear
,
260
(
6
), pp.
594
600
.
23.
Watters
,
E. P. J.
,
Spedding
,
P. L.
,
Grimshaw
,
J.
,
Duffy
,
J. M.
, and
Spedding
,
R. L.
,
2005
, “
Wear of Artificial Hip Joint Material
,”
Chem. Eng. J.
,
112
(
1–3
), pp.
137
144
.
24.
Tang
,
Q.
,
Chen
,
J.
, and
Liu
,
L.
,
2010
, “
Tribological Behaviours of Carbon Fibre Reinforced PEEK Sliding on Silicon Nitride Lubricated With Water
,”
Wear
,
269
(
7–8
), pp.
541
546
.
25.
Yamamoto
,
Y.
, and
Takashima
,
T.
,
2002
, “
Friction and Wear of Water Lubricated PEEK and PPS Sliding Contacts
,”
Wear
,
253
(
7–8
), pp.
820
826
.
26.
Schroeder
,
R.
,
Torres
,
F. W.
,
Binder
,
C.
,
Klein
,
A. N.
, and
Mello
,
J. D. B. D.
,
2013
, “
Failure Mode in Sliding Wear of PEEK Based Composites
,”
Wear
,
301
(
1–2
), pp.
717
726
.
27.
Pei
,
X.
, and
Friedrich
,
K.
,
2012
, “
Sliding Wear Properties of PEEK, PBI and PPP
,”
Wear
,
274–275
(
Suppl. C
), pp.
452
455
.
28.
Davim
,
J. P.
, and
Cardoso
,
R.
,
2006
, “
Tribological Behaviour of the Composite PEEK-CF30 at Dry Sliding against Steel Using Statistical Techniques
,”
Mater. Des.
,
27
(
4
), pp.
338
342
.
29.
Werner
,
P.
,
Altstädt
,
V.
,
Jaskulka
,
R.
,
Jacobs
,
O.
,
Sandler
,
J. K. W.
,
Shaffer
,
M. S. P.
, and
Windle
,
A. H.
,
2004
, “
Tribological Behaviour of Carbon-Nanofibre-Reinforced Poly(Ether Ether Ketone)
,”
Wear
,
257
(
9–10
), pp.
1006
1014
.
30.
Hanchi
,
J.
, and
Eiss
,
N. S.
,
1997
, “
Dry Sliding Friction and Wear of Short Carbon-Fiber-Reinforced Polyetheretherketone (PEEK) at Elevated Temperatures
,”
Wear
,
203–204
(
Suppl. C
), pp.
380
386
.
31.
Kurokawa
,
M.
,
Uchiyama
,
Y.
, and
Nagai
,
S.
,
2000
, “
Performance of Plastic Gear Made of Carbon Fiber Reinforced Poly-Ether-Ether-Ketone—Part 2
,”
Tribol. Int.
,
33
(
10
), pp.
715
721
.
32.
Burris
,
D. L.
, and
Sawyer
,
W. G.
,
2007
, “
Tribological Behavior of PEEK Components With Compositionally Graded PEEK/PTFE Surfaces
,”
Wear
,
262
(
1–2
), pp.
220
224
.
33.
Chen
,
K.
,
Zhang
,
D.
,
Yang
,
X.
,
Cui
,
X.
,
Zhang
,
X.
, and
Wang
,
Q.
,
2016
, “
Research on Torsional Friction Behavior and Fluid Load Support of PVA/HA Composite Hydrogel
,”
J. Mech. Behav. Biomed
,
62
(
Suppl. C
), pp.
182
194
.
34.
Chen
,
K.
,
Zhang
,
D.
,
Yang
,
X.
,
Zhang
,
X.
,
Wang
,
Q.
, and
Qi
,
J.
,
2016
, “
Swing Friction Behavior of the Contact Interface Between CoCrMo and UHMWPE under Dynamic Loading
,”
J. Mater. Eng. Perform.
,
25
(
12
), pp.
1
11
.
35.
Kurtz
,
S. M.
, and
Devine
,
J. N.
,
2007
, “
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
,”
Biomaterials
,
28
(
32
), pp.
4845
4869
.
36.
Burris
,
D. L.
, and
Sawyer
,
W. G.
,
2006
, “
A Low Friction and Ultra Low Wear Rate PEEK/PTFE Composite
,”
Wear
,
261
(
3–4
), pp.
410
418
.
37.
Zhou
,
Z. R.
,
Nakazawa
,
K.
,
Zhu
,
M. H.
,
Maruyama
,
N.
,
Kapsa
,
P.
, and
Vincent
,
L.
,
2006
, “
Progress in Fretting Maps
,”
Tribol. Int.
,
39
(
10
), pp.
1068
1073
.
38.
Zhou
,
Z. R.
, and
Vincent
,
L.
,
1997
, “
Cracking Induced by Fretting of Aluminium Alloys
,”
ASME J. Tribol.
,
119
(
1
), pp.
36
42
.
39.
Cai
,
Z.
,
Zhu
,
M.
,
Shen
,
H.
,
Zhou
,
Z.
, and
Jin
,
X.
,
2009
, “
Torsional Fretting Wear Behaviour of 7075 Aluminium Alloy in Various Relative Humidity Environments
,”
Wear
,
267
(
1–4
), pp.
330
339
.
40.
Cai
,
Z.-B.
,
Gao
,
S.-S.
,
Zhu
,
M.-H.
,
Lin
,
X.-Z.
,
Liu
,
J.
, and
Yu
,
H.-Y.
,
2011
, “
Tribological Behavior of Polymethyl Methacrylate against Different Counter-Bodies Induced by Torsional Fretting Wear
,”
Wear
,
270
(
3–4
), pp.
230
240
.
41.
Wang
,
S. B.
,
Zhang
,
S.
, and
Mao
,
Y.
,
2012
, “
Torsional Wear Behavior of MC Nylon Composites Reinforced With GF: Effect of Angular Displacement
,”
Tribol. Lett.
,
45
(
3
), pp.
445
453
.
42.
Brockett
,
C. L.
,
Carbone
,
S.
,
Fisher
,
J.
, and
Jennings
,
L. M.
,
2017
, “
PEEK and CFR-PEEK as Alternative Bearing Materials to UHMWPE in a Fixed Bearing Total Knee Replacement: An Experimental Wear Study
,”
Wear
, 374–375
, pp.
86
91
.
43.
Lu
,
Z. P.
, and
Friedrich
,
K.
,
1995
, “
On Sliding Friction and Wear of PEEK and Its Composites
,”
Wear
,
181–183
(
Part 2
), pp.
624
631
.
44.
Yu
,
J.
,
Cai
,
Z.
,
Zhu
,
M.
,
Qu
,
S.
, and
Zhou
,
Z.
,
2008
, “
Study on Torsional Fretting Behavior of UHMWPE
,”
Appl. Surf. Sci.
,
255
(
2
), pp.
616
618
.
You do not currently have access to this content.