In this work, a mixed lubrication model, applicable to cam-roller contacts, is presented. The model takes into account non-Newtonian, thermal effects, and variable roller angular velocity. Mixed lubrication is analyzed using the load sharing concept, using measured surface roughness. Using the model, a quasi-static analysis for a heavily loaded cam-roller follower contact is carried out. The results show that when the lubrication conditions in the roller-pin contact are satisfactory, i.e., low friction levels, then the nearly “pure rolling” condition at the cam-roller contact is maintained and lubrication performance is also satisfactory. Moreover, non-Newtonian and thermal effects are then negligible. Furthermore, the influence of roller-pin friction coefficient on the overall tribological behavior of the cam-roller contact is investigated. In this part, a parametric study is carried out in which the friction coefficient in the roller-pin contact is varied from values corresponding to full film lubrication to values corresponding to boundary lubrication. Main findings are that at increasing friction levels in the roller-pin contact, there is a sudden increase in the slide-to-roll ratio (SRR) in the cam-roller contact. The value of the roller-pin friction coefficient at which this sudden increase in SRR is noticed depends on the contact force, the non-Newtonian characteristics, and viscosity–pressure dependence. For roller-pin friction coefficient values higher than this critical value, inclusion of non-Newtonian and thermal effects becomes highly important. Furthermore, after this critical level of roller-pin friction, the lubrication regime rapidly shifts from full film to mixed lubrication. Based on the findings in this work, the importance of ensuring adequate lubrication in the roller-pin contact is highlighted as this appears to be the critical contact in the cam-follower unit.

References

References
1.
Andersson
,
B.
,
1991
, “
Paper Xviii (Iii) Company Perspectives in Vehicle Tribology-Volvo
,”
Tribol. Ser.
,
18
, pp.
503
506
.
2.
Duffy
,
P. E.
,
1993
, “
An Experimental Investigation of Sliding at Cam to Roller Tappet Contacts
,”
SAE
Paper No. 930691
.
3.
Khurram
,
M.
,
Mufti
,
R. A.
,
Zahid
,
R.
,
Afzal
,
N.
, and
Bhutta
,
U.
,
2015
, “
Experimental Measurement of Roller Slip in End-Pivoted Roller Follower Valve Train
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
229
(
9
), pp.
1047
1055
.
4.
Lee
,
J.
, and
Patterson
,
D. J.
,
1995
, “
Analysis of Cam/Roller Follower Friction and Slippage in Valve Train Systems
,”
SAE
Paper No. 951039
.
5.
Chiu
,
Y.
,
1992
, “
Lubrication and Slippage in Roller Finger Follower Systems in Engine Valve Trains
,”
Tribol. Trans.
,
35
(
2
), pp.
261
268
.
6.
Ji
,
F.
, and
Taylor
,
C.
,
1998
, “
A Tribological Study of Roller Follower Valve Trains—Part 1: A Theoretical Study With a Numerical Lubrication Model Considering Possible Sliding
,”
Tribol. Ser.
,
34
, pp.
489
499
.
7.
Turturro
,
A.
,
Rahmani
,
R.
,
Rahnejat
,
H.
,
Delprete
,
C.
, and
Magro
,
L.
,
2012
, “
Assessment of Friction for Cam-Roller Follower Valve Train System Subjected to Mixed Non-Newtonian Regime of Lubrication
,”
ASME
Paper No. ICES2012-81050.
8.
Torabi
,
A.
,
Akbarzadeh
,
S.
, and
Salimpour
,
M.
,
2017
, “
Comparison of Tribological Performance of Roller Follower and Flat Follower Under Mixed Elastohydrodynamic Lubrication Regime
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
231
(
8
), pp.
986
996
.
9.
Alakhramsing
,
S. S.
,
de Rooij
,
M. B.
,
Schipper
,
D. J.
, and
van Drogen
,
M.
,
2017
, “
A Full Numerical Solution to the Coupled Cam–Roller and Roller–Pin Contact in Heavily Loaded Cam–Roller Follower Mechanisms
,”
Proc. Inst. Mech. Eng., Part J
,
208–210
, pp. 1–12.
10.
Alakhramsing
,
S. S.
,
de Rooij
,
M. B.
,
Schipper
,
D. J.
, and
van Drogen
,
M.
,
2017
, “
Lubrication and Frictional Analysis of Cam–Roller Follower Mechanisms
,”
Proc. Inst. Mech. Eng., Part J
,
232
(
3
), pp.
347
363
.
11.
Johnson
,
K.
,
Greenwood
,
J.
, and
Poon
,
S.
,
1972
, “
A Simple Theory of Asperity Contact in Elastohydro-Dynamic Lubrication
,”
Wear
,
19
(
1
), pp.
91
108
.
12.
Habchi
,
W.
,
2008
, “
A Full-System Finite Element Approach to Elastohydrodynamic Lubrication Problems
,”
Ph.D. thesis
, L 'Institut National des Sciences Appliquées de Lyon, Villeurbanne, France.http://www.theses.fr/2008ISAL0038
13.
Masjedi
,
M.
, and
Khonsari
,
M.
,
2012
, “
Film Thickness and Asperity Load Formulas for Line-Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness
,”
ASME J. Tribol.
,
134
(
1
), p.
011503
.
14.
Brandt
,
A.
, and
Lubrecht
,
A.
,
1990
, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
,
90
(
2
), pp.
348
370
.
15.
Habchi
,
W.
,
2017
, “
Coupling Strategies for Finite Element Modeling of Thermal Elastohydrodynamic Lubrication Problems
,”
ASME J. Tribol.
,
139
(
4
), p.
041501
.
16.
Peiran
,
Y.
, and
Shizhu
,
W.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
17.
Wu
,
S.
,
1986
, “
A Penalty Formulation and Numerical Approximation of the Reynolds-Hertz Problem of Elastohydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
24
(
6
), pp.
1001
1013
.
18.
Bayada
,
G.
, and
Chupin
,
L.
,
2013
, “
Compressible Fluid Model for Hydrodynamic Lubrication Cavitation
,”
ASME J. Tribol.
,
135
(
4
), p.
041702
.
19.
Profito
,
F. J.
,
Vlădescu
,
S.-C.
,
Reddyhoff
,
T.
, and
Dini
,
D.
,
2017
, “
Transient Experimental and Modelling Studies of Laser-Textured Micro-Grooved Surfaces With a Focus on Piston-Ring Cylinder Liner Contacts
,”
Tribol. Int.
,
113
, pp.
125
136
.
20.
Alakhramsing
,
S. S.
,
de Rooij
,
M. B.
,
Schipper
,
D. J.
, and
van Drogen
,
M.
, “
Elastohydrodynamic Lubrication of Coated Finite Line Contacts
,”
Proc. Inst. Mech. Eng., Part J
, (epub).
21.
Bobach
,
L.
,
Beilicke
,
R.
,
Bartel
,
D.
, and
Deters
,
L.
,
2012
, “
Thermal Elastohydrodynamic Simulation of Involute Spur Gears Incorporating Mixed Friction
,”
Tribol. Int.
,
48
, pp.
191
206
.
22.
Akchurin
,
A.
,
Bosman
,
R.
,
Lugt
,
P. M.
, and
van Drogen
,
M.
,
2015
, “
On a Model for the Prediction of the Friction Coefficient in Mixed Lubrication Based on a Load-Sharing Concept With Measured Surface Roughness
,”
Tribol. Lett.
,
59
(
1
), p.
19
.
23.
Liu
,
S.
,
2001
, “
Thermomechanical Contact Analyses of Rough Bodies
,” Ph.D. thesis, Northwestern University, Evanston, IL.
24.
Polonsky
,
I.
, and
Keer
,
L.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
.
25.
Masjedi
,
M.
, and
Khonsari
,
M.
,
2014
, “
Theoretical and Experimental Investigation of Traction Coefficient in Line-Contact Ehl of Rough Surfaces
,”
Tribol. Int.
,
70
, pp.
179
189
.
26.
Wang
,
Y.
,
Li
,
H.
,
Tong
,
J.
, and
Yang
,
P.
,
2004
, “
Transient Thermoelastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Tribol. Int.
,
37
(
10
), pp.
773
782
.
27.
Kaneta
,
M.
,
Shigeta
,
T.
, and
Yang
,
P.
,
2006
, “
Film Pressure Distributions in Point Contacts Predicted by Thermal Ehl Analyses
,”
Tribol. Int.
,
39
(
8
), pp.
812
819
.
28.
Sadeghi
,
F.
, and
Dow
,
T. A.
,
1987
, “
Thermal Effects in Rolling/Sliding Contacts—Part 2: Analysis of Thermal Effects in Fluid Film
,”
ASME J. Tribol.
,
109
(
3
), pp.
512
517
.
29.
Rong-Tsong
,
L.
, and
Chao-Ho
,
H.
,
1993
, “
A Fast Method for the Analysis of Thermal-Elastohydrodynamic Lubrication of Rolling/Sliding Line Contacts
,”
Wear
,
166
(
1
), pp.
107
117
.
30.
Wolff
,
R.
, and
Kubo
,
A.
,
1994
, “
The Application of Newton-Raphson Method to Thermal Elastohydrodynamic Lubrication of Line Contacts
,”
ASME J. Tribol.
,
116
(
4
), pp.
733
740
.
31.
Chu
,
L.-M.
,
Hsu
,
H.-C.
,
Lin
,
J.-R.
, and
Chang
,
Y.-P.
,
2009
, “
Inverse Approach for Calculating Temperature in Ehl of Line Contacts
,”
Tribol. Int.
,
42
(
8
), pp.
1154
1162
.
32.
Masjedi
,
M.
, and
Khonsari
,
M.
,
2015
, “
An Engineering Approach for Rapid Evaluation of Traction Coefficient and Wear in Mixed Ehl
,”
Tribol. Int.
,
92
, pp.
184
190
.
33.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Thermal Ehl Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
,
118
(
3
), pp.
473
483
.
34.
Zhai
,
X.
, and
Chang
,
L.
,
2000
, “
A Transient Thermal Model for Mixed-Film Contacts
,”
Tribol. Trans.
,
43
(
3
), pp.
427
434
.
35.
Zhu
,
D.
, and
Hu
,
Y.-Z.
,
2001
, “
A Computer Program Package for the Prediction of Ehl and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3-D Surface Roughness
,”
Tribol. Trans.
,
44
(
3
), pp.
383
390
.
36.
Wang
,
W.-Z.
,
Liu
,
Y.-C.
,
Wang
,
H.
, and
Hu
,
Y.-Z.
,
2004
, “
A Computer Thermal Model of Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
126
(
1
), pp.
162
170
.
37.
Wang
,
W-Z.
,
Hu
,
Y-Z.
,
Liu
,
Y-C.
, and
Wang
,
H.
,
2007
, “
Deterministic Solutions and Thermal Analysis for Mixed Lubrication in Point Contacts
,”
Tribol. Int.
,
40
(
4
), pp.
687
693
.
38.
Li
,
S.
,
Kahraman
,
A.
,
Anderson
,
N.
, and
Wedeven
,
L.
,
2013
, “
A Model to Predict Scuffing Failures of a Ball-on-Disk Contact
,”
Tribol. Int.
,
60
, pp.
233
245
.
39.
Wang
,
X.
,
Liu
,
Y.
, and
Zhu
,
D.
,
2017
, “
Numerical Solution of Mixed Thermal Elastohydrodynamic Lubrication in Point Contacts With Three-Dimensional Surface Roughness
,”
ASME J. Tribol.
,
139
(
1
), p.
011501
.
40.
Gu
,
C.
,
Meng
,
X.
,
Xie
,
Y.
, and
Fan
,
J.
,
2016
, “
A Thermal Mixed Lubrication Model to Study the Textured Ring/Liner Conjunction
,”
Tribol. Int.
,
101
, pp.
178
193
.
41.
Guo
,
F.
,
Yang
,
P.
, and
Qu
,
S.
,
2001
, “
On the Theory of Thermal Elastohydrodynamic Lubrication at High Slide-Roll Ratios-Circular Glass-Steel Contact Solution at Opposite Sliding
,”
ASME J. Tribol.
,
123
(
1
), pp.
816
821
.
42.
Cheng
,
H.
,
1965
, “
A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders
,”
ASLE Trans.
,
8
(
4
), pp.
397
410
.
43.
Gelinck
,
E.
, and
Schipper
,
D.
,
2000
, “
Calculation of Stribeck Curves for Line Contacts
,”
Tribol. Int.
,
33
(
3–4
), pp.
175
181
.
44.
Akbarzadeh
,
S.
, and
Khonsari
,
M.
,
2008
, “
Thermoelastohydrodynamic Analysis of Spur Gears With Consideration of Surface Roughness
,”
Tribol. Lett.
,
32
(
2
), pp.
129
141
.
45.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
, Vol.
23
,
Oxford, Pergamon Press
,
Turkey
.
46.
Eyring
,
H.
,
1936
, “
Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
,
4
(
4
), pp.
283
291
.
47.
Carreau
,
P. J.
,
1972
, “
Rheological Equations From Molecular Network Theories
,”
Trans. Soc. Rheol.
,
16
(
1
), pp.
99
127
.
48.
Bair
,
S.
, and
Winer
,
W.
,
1979
, “
Shear Strength Measurements of Lubricants at High Pressure
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
251
257
.
49.
Bair
,
S.
, and
Winer
,
W.
,
1979
, “
A Rheological Model for Elastohydrodynamic Contacts Based on Primary Laboratory Data
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
258
264
.
50.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid:1fb56839-9589-4ffb-98aa-4a20968d1f90/
51.
Lohner
,
T.
,
Ziegltrum
,
A.
,
Stemplinger
,
J.-P.
, and
Stahl
,
K.
,
2016
, “
Engineering Software Solution for Thermal Elastohydrodynamic Lubrication Using Multiphysics Software
,”
Adv. Tribol.
,
2016
, p. 13.
52.
Johnson
,
K.
, and
Spence
,
D.
,
1991
, “
Determination of Gear Tooth Friction by Disc Machine
,”
Tribol. Int.
,
24
(
5
), pp.
269
275
.
53.
Gelinck
,
E. R. M.
,
1991
, “
Mixed Lubrication of Line Contacts
,”
Ph.D. thesis
, University of Twente, Enschede, The Netherlands.https://research.utwente.nl/en/publications/mixed-lubricated-line-contacts
54.
Greenwood
,
J.
, and
Williamson
,
J. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond. A
,
295
(
1442
), pp.
300
319
.
55.
Alakhramsing
,
S. S.
,
de Rooij
,
M. B.
,
van Drogen
,
M.
, and
Schipper
,
D. J.
,
2018
, “
On the Influence of Stick-Slip Transitions in Mixed-Friction Predictions of Heavily Loaded Cam-Roller Contacts
,”
Proc. Inst. Mech. Eng., Part J
, (epub).
You do not currently have access to this content.