In this study, a comprehensive mechanical efficiency model based on the thermal elastohydrodynamic lubrication (TEHL) is developed for a helical gear pair. The tribological performance of the helical gear pair is evaluated in terms of the average film thickness, friction coefficient, mechanical power loss, mechanical efficiency, etc. The influence of basic design parameters, working conditions, thermal effect, and surface roughness are studied under various transmission ratios. Results show that the contribution of thermal effect on the tribological performance is remarkable. Meanwhile, the rolling power loss constitutes an important portion of the total mechanical power loss, especially around the meshing position where the pitch point is located in the middle of contact line and the full elastohydrodynamic lubrication (EHL) state with the friction coefficient less than 0.005. The proper increase of normal pressure angle and number of tooth can improve the tribological performance. The influence of helix angle on the mechanical efficiency is less significant. A positive addendum modification coefficient for pinion and a negative addendum modification coefficient for wheel are good for improving the mechanical efficiency. The results provide the tribological guidance for design of a helical gear pair in engineering.

References

References
1.
Wu
,
S.
, and
Cheng
,
H. S.
,
1991
, “
A Friction Model of Partial-EHL Contacts and its Application to Power Loss in Spur Gears
,”
Tribol. Trans.
,
34
(
3
), pp.
398
407
.
2.
Haizuka
,
S.
,
Naruse
,
C.
, and
Yamanaka
,
T.
,
1999
, “
Study of Influence of Helix Angle on Friction Characteristics of Helical Gears
,”
Tribol. Trans.
,
42
(
3
), pp.
570
580
.
3.
Xu
,
H.
,
2005
, “
Development of a Generalized Mechanical Efficiency Prediction Methodology for Gear Pairs
,”
Ph.D. thesis
, The Ohio State University, Columbus, OH.https://etd.ohiolink.edu/!etd.send_file?accession=osu1128372109&disposition=inline
4.
Heingartner
,
P.
, and
Mba
,
D.
,
2003
, “
Determining Power Losses in the Helical Gear Mesh; Case Study
,”
ASME
Paper No. DETC2003/PTG-48118.
5.
Li
,
S.
,
Vaidyanathan
,
A.
,
Harianto
,
J.
, and
Kahraman
,
A.
,
2009
, “
Influence of Design Parameters on Mechanical Power Losses of Helical Gear Pairs
,”
J. Adv. Mech. Des., Syst., Manuf.
,
3
(
2
), pp.
146
158
.
6.
Baglioni
,
S.
,
Cianetti
,
F.
, and
Landi
,
L.
,
2012
, “
Influence of the Addendum Modification on Spur Gear Efficiency
,”
Mech. Mach. Theory
,
49
, pp.
216
233
.
7.
Douglas
,
C. E.
, and
Thite
,
A.
,
2015
, “
Effect of Lubricant Temperature and Type on Spur Gear Efficiency in Racing Engine Gearbox Across Full Engine Load and Speed Range
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
229
(
9
), pp.
1095
1113
.
8.
Marques
,
P. M. T.
,
Martins
,
R. C.
, and
Seabra
,
J. H. O.
,
2016
, “
Gear Dynamics and Power Loss
,”
Tribol. Int.
,
97
, pp.
400
411
.
9.
Liu
,
H.
,
Zhu
,
C.
,
Zhang
,
Y. Y.
,
Wang
,
Z.
, and
Song
,
C.
,
2016
, “
Tribological Evaluation of a Coated Spur Gear Pair
,”
Tribol. Int.
,
99
, pp.
17
126
.
10.
Britton
,
R. D.
,
Elcoate
,
C. D.
,
Alanou
,
M. P.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2000
, “
Effect of Surface Finish on Gear Tooth Friction
,”
ASME J. Tribol.
,
122
(
1
), pp.
354
360
.
11.
Diab
,
Y.
,
Ville
,
F.
, and
Velex
,
P.
,
2006
, “
Prediction of Power Losses Due to Tooth Friction in Gears
,”
Tribol. Trans.
,
49
(
2
), pp.
260
270
.
12.
Petry-Johnson
,
T. T.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Chase
,
D. R.
,
2008
, “
An Experimental Investigation of Spur Gear Efficiency
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062601
.
13.
Luis
,
M.
,
Ramiro
,
M.
,
Cristiano
,
L.
, and
Jorge
,
S.
,
2010
, “
Influence of Tooth Profile and Oil Formulation on Gear Power Loss
,”
Tribol. Int.
,
43
(
10
), pp.
1861
1871
.
14.
Isaacson
,
A. C.
,
Wagner
,
M. E.
,
Rao
,
S. B.
, and
Sroka
,
G.
,
2016
, “
Impact of Surface Condition and Lubricant on Effective Gear Tooth Friction Coefficient
,”
American Gear Manufacturers Association Fall Technical Meeting 2016
, Pittsburgh, PA, Oct. 2–4, pp.
41
47
.
15.
Ziegltrum
,
A.
,
Lohner
,
T.
, and
Stahl
,
K.
,
2017
, “
TEHL Simulation on the Influence of Lubricants on Load-Dependent Gear Losses
,”
Tribol. Int.
,
113
, pp.
252
261
.
16.
Andersson
,
M.
,
Sosa
,
M.
, and
Olofsson
,
U.
,
2017
, “
Efficiency and Temperature of Spur Gears Using Spray Lubrication Compared to Dip Lubrication
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
231
(
11
), pp.
1390
1396
.
17.
Zhu
,
C.
,
Liu
,
M.
,
Liu
,
H.
,
Xu
,
X.
, and
Liu
,
L.
,
2013
, “
A Thermal Finite Line Contact EHL Model of a Helical Gear Pair
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
227
(
4
), pp.
299
309
.
18.
Liu
,
M.
,
Zhu
,
C.
,
Liu
,
H.
,
Ding
,
H.
, and
Sun
,
Z.
,
2014
, “
Effects of Working Conditions on TEHL Performance of a Helical Gear Pair With Non-Newtonian Fluids
,”
ASME J. Tribol.
,
136
(
2
), p.
021502
.
19.
Liu
,
M.
,
Zhu
,
C.
,
Liu
,
H.
, and
Wu
,
C.
,
2016
, “
Parametric Studies of Lubrication Performance of a Helical Gear Pair With Non-Newtonian Fluids
,”
J. Mech. Sci. Tech.
,
30
(
1
), pp.
317
326
.
20.
Liu
,
M.
,
Liu
,
Y.
, and
Wu
,
C.
,
2018
, “
The Transient and Thermal Effects on EHL Performance of a Helical Gear Pair
,”
Tribology
,
13
(3), pp. 81–90.
21.
Hu
,
Y.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
22.
Eyring
,
H.
,
1936
, “
Viscosity, Plasticity and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
,
4
(
4
), pp.
283
291
.
23.
Roelands
,
C. J. A.
,
1966
, “
Correlation Aspects of Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid:1fb56839-9589-4ffb-98aa-4a20968d1f90/
24.
Dowson
,
D.
,
Higginson
,
G. R.
, and
Whitaker
,
A. V.
,
1962
, “
Elasto-Hydrodynamic Lubrication: A Survey of Isothermal Solutions
,”
Archive J. Mech. Eng. Sci.
,
4
(
2
), pp.
121
126
.
25.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford at the Clarendon Press
,
London
.
26.
Kim
,
H. J.
,
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
2001
, “
Thermal Elastohydrodynamic Analysis of Circular Contacts—Part 1: Newtonian Model
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
215
(
4
), pp.
339
352
.
27.
Li
,
S.
,
Kahraman
,
A.
,
Anderson
,
N.
, and
Wedeven
,
L. D.
,
2013
, “
A Model to Predict Scuffing Failures of a Ball-on-Disk Contact
,”
Tribol. Int.
,
60
, pp.
233
245
.
28.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
29.
Dowson
,
D.
,
1995
, “
Elastohydrodynamic and Micro-Elastohydrodynamic Lubrication
,”
Wear
,
190
(
2
), pp.
125
138
.
You do not currently have access to this content.