The erosion–corrosion (EC) and pure erosion of commercially pure titanium have been investigated in a 3.5% sodium chloride solution containing 10, 30, and 60 g/l SiO2 particles with an average size of 318 μm. The tests were performed at impact velocities of 4, 6, and 9 m/s under two impact angles of 40 deg and 90 deg. Polarization technique was used to study corrosion behavior of the material during erosion–corrosion. The eroded surfaces were examined by a scanning electron microscope (SEM) and a surface profilometer. The pure erosion, corrosion, and erosion–corrosion rates increased as impact velocity and sand concentration increased. The corrosion rates of the eroding surfaces under a normal impact were lower than those at an impact angle of 40 deg. The S/T ratio, i.e., the ratio of synergy to erosion–corrosion rates was about 80% at an impact velocity of 4 m/s, which indicated the high effect of the electrochemical corrosion on the degradation of CP-Ti at low velocity. The S/T ratio decreased to 30% and 15% at the impact velocities of 6 and 9 m/s, respectively. The S/T ratio was also decreased with increasing sand concentration indicating a greater role of mechanical degradation upon the erosion–corrosion rate in the concentrated slurries.

References

References
1.
Duan
,
C. G.
, and
Karelin
,
V. Y.
,
2002
,
Abrasive Erosion and Corrosion of Hydraulic Machinery
,
Imperial College Press
,
London
.
2.
Budinski
,
K. G.
,
2007
,
Guide to Friction, Wear, and Erosion Testing
,
ASTM International
,
West Conshohocken, PA
.
3.
Saleh
,
B.
,
Abouel-Kasem
,
A.
, and
Ahmed
,
S. M.
,
2015
, “
Effect of Surface Properties Modification on Slurry Erosion–Corrosion Resistance of AISI 5117 Steel
,”
ASME J. Tribol.
,
137
(
3
), p.
031105
.
4.
Ranjbar
,
M.
,
Ghasemi
,
H. M.
, and
Abedini
,
M.
,
2015
, “
Effect of Impact Angle on the Erosion–Corrosion Behavior of AISI420 Stainless Steel in 3.5 Wt.% NaCl Solution
,”
ASME J. Tribol.
,
137
(
3
), p.
031604
.
5.
Rajahram
,
S. S.
,
Harvey
,
T. J.
, and
Wood
,
R. J. K.
,
2009
, “
Evaluation of a Semi-Empirical Model in Predicting Erosion–Corrosion
,”
Wear
,
267
(
11
), pp.
1883
1893
.
6.
Smith
,
A. J.
,
Stratmann
,
M.
, and
Hassel
,
A. W.
,
2006
, “
Investigation of the Effect of Impingement Angle on Tribocorrosion Using Single Impacts
,”
Electrochim. Acta
,
51
(
28
), pp.
6521
6526
.
7.
Stack
,
M. M.
,
Purandare
,
Y.
, and
Hovsepian
,
P.
,
2004
, “
Impact Angle Effects on the Erosion–Corrosion of Superlattice CrN/NbN PVD Coatings
,”
Surf. Coat. Technol.
,
188–189
, pp.
556
565
.
8.
Hemmati
,
A. R.
,
Soltanieh
,
M.
, and
Masoudpanah
,
S. M.
,
2017
, “
Effect of Flow Velocity and Impact Angle on Erosion–Corrosion Behavior of Chromium Carbide Coating
,”
ASME J. Tribol.
,
139
(
3
), p.
031303
.
9.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2001
,
Engineering Tribology
,
2nd ed.
,
Butterworth-Heinemann
,
Boston, MA
.
10.
Kleis
,
I.
, and
Kulu
,
P.
,
2008
,
Solid Particle Erosion, Occurrence, Prediction and Control
,
Springer
,
London
.
11.
Islam
,
M. A.
,
Farhat
,
Z. N.
,
Ahme
,
E. M.
, and
Alfantazi
,
A. M.
,
2013
, “
Erosion Enhanced Corrosion and Corrosion Enhanced Erosion of API X-70 Pipeline Steel
,”
Wear
,
302
(
1–2
), pp.
1592
1601
.
12.
Yu
,
B.
,
Li
,
D. Y.
, and
Grondin
,
A.
,
2013
, “
Effects of the Dissolved Oxygen and Slurry Velocity on Erosion–Corrosion of Carbon Steel in Aqueous Slurries With Carbon Dioxide and Silica Sand
,”
Wear
,
302
(
1–2
), pp.
1609
1614
.
13.
Yang
,
Y.
, and
Cheng
,
Y. F.
,
2012
, “
Parametric Effects on the Erosion–Corrosion Rate and Mechanism of Carbon Steel Pipes in Oil Sands Slurry
,”
Wear
,
276–277
, pp.
141
148
.
14.
Lopez
,
D.
,
Congote
,
J. P.
,
Cano
,
J. R.
,
Toro
,
A.
, and
Tschiptschin
,
A. P.
,
2005
, “
Effect of Particle Velocity and Impact Angle on the Corrosion–Erosion of AISI 304 and AISI 420 Stainless Steels
,”
Wear
,
259
(
1–6
), pp.
118
124
.
15.
Chung
,
R. J.
,
Tang
,
X.
,
Li
,
D. Y.
,
Hinckley
,
B.
, and
Dolman
,
K.
,
2011
, “
Abnormal Erosion–Slurry Velocity Relationship of High Chromium Cast Iron With High Carbon Concentrations
,”
Wear
,
271
(
9–10
), pp.
1454
1461
.
16.
Padhy
,
M. K.
, and
Saini
,
R. P.
,
2009
, “
Effect of Size and Concentration of Silt Particles on Erosion of Pelton Turbine Buckets
,”
Energy
,
34
(
10
), pp.
1477
1483
.
17.
Flores
,
J. F.
,
Neville
,
A.
,
Kapur
,
N.
, and
Gnanavelu
,
A.
,
2009
, “
Erosion–Corrosion Degradation Mechanisms of Fe–Cr–C and WC–Fe–Cr–C PTA Overlays in Concentrated Slurries
,”
Wear
,
267
(
11
), pp.
1811
1820
.
18.
Deng
,
T.
,
Chaudhry
,
A. R.
,
Patel
,
M.
,
Hutchings
,
I.
, and
Bradley
,
M. S. A.
,
2005
, “
Effect of Particle Concentration on Erosion Rate of Mild Steel Bends in a Pneumatic Conveyor
,”
Wear
,
258
(
1–4
), pp.
480
487
.
19.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2008
, “
Slurry Erosion of Ductile Materials Under Normal Impact Condition
,”
Wear
,
264
(
3–4
), pp.
322
330
.
20.
Grewal
,
H. S.
,
Arora
,
H. S.
,
Agrawal
,
A.
,
Singh
,
H.
, and
Mukherjee
,
S.
,
2013
, “
Slurry Erosion of Thermal Spray Coatings: Effect of Sand Concentration
,”
Procedia Eng.
,
68
, pp.
484
490
.
21.
Rajahram
,
S. S.
,
Harvey
,
T. J.
, and
Wood
,
R. J. K.
,
2010
, “
Full Factorial Investigation on the Erosion–Corrosion Resistance of UNS S31603
,”
Tribol. Int.
,
43
(
11
), pp.
2072
2083
.
22.
Abedini
,
M.
, and
Ghasemi
,
H. M.
,
2016
, “
Corrosion Behavior of Al-Brass Alloy During Erosion–Corrosion Process: Effects of Jet Velocity and Sand Concentration
,”
Mater. Corros.
,
67
(
5
), pp.
513
521
.
23.
Leyens
,
C.
, and
Peters
,
M.
,
2003
,
Titanium and Titanium Alloys, Fundamentals and Application
,
Wiley-VCH
,
Weinheim, Germany
.
24.
Polmear
,
I. J.
,
2006
,
Light Alloys, From Traditional Alloys to Nanocrystals
,
4th ed.
,
Elsevier
,
Melbourne, Australia
.
25.
Lutjering
,
G.
, and
Williams
,
J. C.
,
2003
,
Titanium
,
2nd ed.
,
Springer
,
New York
.
26.
Fellah
,
M.
, and
Aissani
,
L.
,
2017
, “
Effect of Milling Time on Sliding Friction and Wear Behavior of Hot Isostatically Pressed Titanium Alloys Ti-6Al-4X(X=V, Nb Fe) for Biomedical Applications
,”
ASME J. Tribol.
(accepted).
27.
Yang
,
J.
, and
Swisher
,
J. H.
,
1993
, “
Erosion-Corrosion Behavior and Cathodic Protection of Alloys in Seawater-Sand Slurries
,”
J. Mater. Eng. Perform.
,
2
(
6
), pp.
843
850
.
28.
Neville
,
A.
, and
McDougall
,
B. A. B.
,
2002
, “
Electrochemical Assessment of Erosion–Corrosion of Commercially Pure Titanium and a Titanium Alloy in Slurry Impingement
,”
Mater. Des. Appl.
,
216
(
1
), pp.
31
41
.
29.
Neville
,
A.
, and
McDougall
,
B. A. B.
,
2001
, “
Erosion– and Cavitation–Corrosion of Titanium and Its Alloys
,”
Wear
,
250
(
1–12
), pp.
726
735
.
30.
Bermudez
,
M. D.
,
Carrion
,
F. J.
,
Nicolas
,
G. M.
, and
Lopez
,
R.
,
2005
, “
Erosion–Corrosion of Stainless Steels, Titanium, Tantalum and Zirconium
,”
Wear
,
258
(
1–4
), pp.
693
700
.
31.
Ghasemi
,
H. M.
,
Karimi
,
M.
,
Pasha
,
A.
, and
Abedini
,
M.
,
2011
, “
Erosion–Corrosion Behavior of 316-SS in Seawater Simulated Environment at Various Impingement Angles
,”
Int. J. Mech. Mater. Eng.
,
6
(
3
), pp.
400
404
.https://www.researchgate.net/publication/279698342_Erosion-corrosion_behavior_of_316-ss_in_seawater_simulated_environment_at_various_impingement_angles
32.
Abedini
,
M.
, and
Ghasemi
,
H. M.
,
2014
, “
Synergistic Erosion–Corrosion Behavior of Al–Brass Alloy at Various Impingement Angles
,”
Wear
,
319
(
1–2
), pp.
49
55
.
33.
Pasha
,
A.
,
Ghasemi
,
H. M.
, and
Neshati
,
J.
,
2016
, “
Synergistic Erosion-Corrosion Behavior of X-65 Carbon Steel at Various Impingement Angles
,”
ASME J. Tribol.
,
139
(
1
), p.
011105
.
34.
ASTM International
,
2007
, “
Standard Guide for Determining Synergism Between Wear and Corrosion
,” ASTM International, West Conshohocken, PA, Standard No.
G119-04
.https://www.astm.org/Standards/G119.htm
35.
ASTM International
,
2004
, “
Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements
,” ASTM International, West Conshohocken, PA, Standard No.
G5-04
.https://www.astm.org/DATABASE.CART/HISTORICAL/G5-94R11E1.htm
36.
McCafferty
,
E.
,
2010
,
Introduction to Corrosion Science
,
Springer
,
New York
.
37.
ASTM Internationa
l,
2009
, “
Standard Guide for Determining Synergism Between Wear and Corrosion
,” ASTM International, West Conshohocken, PA, Standard No.
G102
.https://www.astm.org/DATABASE.CART/HISTORICAL/G119-03.htm
38.
Shalaby
,
H. M.
,
Al-Mazeedi
,
H.
,
Gopal
,
H.
, and
Tanoli
,
N.
,
2011
, “
Failure of Titanium Condenser Tube
,”
Eng. Failure Anal.
,
18
(
8
), pp.
1990
1997
.
39.
Giourntas
,
L.
,
Hodgkiess
,
T.
, and
Galloway
,
A. M.
,
2015
, “
Comparative Study of Erosion–Corrosion Performance on a Range of Stainless Steels
,”
Wear
,
332–333
, pp.
1051
1058
.
40.
Hussain
,
E. A. M.
, and
Robinson
,
M. J.
,
2007
, “
Erosion–Corrosion of 2205 Duplex Stainless Steel in Flowing Seawater Containing Sand Particles
,”
Corros. Sci.
,
49
(
4
), pp.
1737
1754
.
41.
Bardal
,
E.
,
2004
,
Corrosion and Protection
,
Springer
,
London
.
42.
Pasha
,
A.
,
Ghasemi
,
H. M.
, and
Neshati
,
J.
,
2016
, “
Study of the Pitting Corrosion of Superduplex Stainless Steel and X-65 Carbon Steel During Erosion–Corrosion by Cyclic Polarization Technique
,”
Corros. Eng., Sci. Technol.
,
51
(
6
), pp.
463
471
.
43.
Burstein
,
G. T.
, and
Sasaki
,
K.
,
2000
, “
Effect of Impact Angle on the Slurry Erosion–Corrosion of 304 L Stainless Steel
,”
Wear
,
240
(
1–2
), pp.
80
94
.
44.
Abedini
,
M.
, and
Ghasemi
,
H. M.
,
2017
, “
Erosion and Erosion–Corrosion of Al-Brass Alloy: Effects of Jet Velocity, Sand Concentration and Impingement Angle on Surface Roughness
,”
Trans. Nonferrous Met. Soc. China
,
27
(
11
), pp.
2371
2380
.
45.
Zhu
,
Y.
,
Zoun
,
J.
,
Zhao
,
W. L.
,
Chen
,
X. B.
, and
Yang
,
H. Y.
,
2016
, “
A Study on Surface Topography in Cavitation Erosion Tests of AlSi10 Mg
,”
Tribol. Int.
,
102
, pp.
419
428
.
46.
Wood
,
R. J. K.
,
Puget
,
Y.
,
Trethewey
,
K. R.
, and
Stokes
,
K.
,
1998
, “
The Performance of Marine Coatings and Pipe Materials Under Fluid-Borne Sand Erosion
,”
Wear
,
219
(
1
), pp.
46
59
.
You do not currently have access to this content.