Hollow cylindrical roller bearings (HCRBs) have obtained much attention from design engineers in bearing industries since they can perform better than solid cylindrical roller bearings (SCRBs) in centrifugal forces, contact stiffness, cooling ability, fatigue life, etc. In this study, an analytical dynamic model of a lubricated HCRB is presented to analyze the influences of the radial load, the shaft speed, and the hollowness percentage of the roller on the bearing vibrations, which cannot be formulated by the methods in the reported literature. Both the support stiffness of the shaft and the roller mass are formulated in the presented dynamic model. The hollow hole in the roller is modeled as a uniform one. Numerical results show that the hollowness percentage of the roller has a great influence on the vibrations of the roller and the inner race of the HCRB. Moreover, the vibrations of the components of the HCRB are not only determined by the hollowness percentage of the roller, but also depended on the external radial load and shaft speed. Therefore, during the design process for the hollowness percentage of the roller, the influences of the radial load and the shaft speed on the vibrations of the bearing components should be considered, except for the fatigue life. The results show that this work can give a new dynamic method for analyzing the vibrations of the HCRBs. Moreover, it can give some guidance for the design method for the HCRBs.

References

References
1.
Hanau
,
H.
,
1965
,
New Concepts in Bearing Designs and Applications
,
Industrial Tectonics Incorporated
,
Dexter, MI
.
2.
Harris
,
T. A.
, and
Aaronson, S. F.
,
1968
, “
Anti-Skid Bearing
,” U.S. Patent No.
3, 410, 618
.https://encrypted.google.com/patents/US3410618
3.
Bamberger
,
E. N.
,
Parker
,
R. J.
, and
Dietrich
,
M. W.
,
1976
, “
Flexural Fatigue of Hollow Rolling Elements
,” National Aeronautics and Space Administration. Washington, DC, NASA Paper No.
TH-D-8313
.https://ntrs.nasa.gov/search.jsp?R=19760026420
4.
Bowen
,
W. L.
,
1976
, “
Full Complement Bearing Having Preloaded Hollow Rollers
,” Timken US LLC, Jackson Township, OH, U.S. Patent No.
3, 930, 693
.https://patents.google.com/patent/US3930693A/en
5.
Bowen
,
W. L.
,
1977
, “
Roller Bearing of Superior Run-out Characteristics
,” Timken US LLC, Jackson Township, OH, U.S. Patent No.
4, 002, 380
.https://patents.google.com/patent/US4002380A/en
6.
Wu
,
W.
,
Xiao
,
B.
,
Yuan
,
S.
, and
Hu
,
C.
,
2018
, “
Temperature Distributions of an Open Grooved Disk System During Engagement
,”
Appl. Therm. Eng.
,
136
, pp.
349
355
.
7.
Liu
,
J.
, and
Shao
,
Y.
,
2018
, “
Overview of Dynamic Modelling and Analysis of Rolling Element Bearings With Localized and Distributed Faults
,”
Nonlinear Dyn.
(epub).http://sci-hub.tw/10.1007/s11071-018-4314-y
8.
Derner
,
W. J.
,
Goodelle
,
R. A.
,
Root
,
L. E.
, and
Ruang
,
R.
,
1972
, “
The Hollow-Ended Roller—a Solution for Improving Fatigue Life in Asymmetrically Loaded Cylindrical Roller Bearings
,”
ASME J. Lubr. Technol.
,
94
(
2
), pp.
153
162
.
9.
Nypan
,
L. J.
,
Coe
,
H. H.
, and
Parker
,
R. J.
,
1976
, “
Bending Stresses in Spherically Hollow Ball Bearing and Fatigue Experiments
,”
ASME J. Lubr. Technol.
,
98
(
3
), pp.
472
475
.
10.
Bamberger
,
E. N.
, and
Parker
,
R. J.
,
1978
, “
Effect of Wall Thickness and Material on Flexural Fatigue of Hollow Rolling Elements
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
39
46
.
11.
Bowen
,
W. L.
, and
Murphy
,
T. W.
,
1981
, “
High Speed Testing of the Hollow Roller Bearing
,”
ASME J. Lubr. Technol.
,
103
(
1
), pp.
1
5
.
12.
Bhateja
,
C. P.
, and
Pine
,
R. D.
,
1981
, “
The Rotational Accuracy Characteristics of the Preloaded Hollow Roller Bearing
,”
ASME J. Lubr. Technol.
,
103
(
1
), pp.
6
12
.
13.
Zhao
,
H.
,
1998
, “
Analysis of Load Distributions Within Solid and Hollow Roller Bearings
,”
ASME J. Tribol.
,
120
(
1
), pp.
134
139
.
14.
Jadayil
,
W. A.
,
Flugrad
,
D.
, and
Qamhiyah
,
A.
,
2005
, “
Fatigue Life Investigation of Solid and Hollow Rollers in Pure Rolling Contact
,”
World Tribology Congress III
(
WTC
), Washington, DC, Sept. 12–16, pp.
191
192
.
15.
Darji
,
P. H.
, and
Vakharia
,
D. P.
,
2008
, “
Stiffness Optimization of Hollow Cylindrical Rolling Element Bearing
,”
ASME
Paper No. IJTC2008-71009.
16.
Jadayil
,
W. M. A.
, and
Jaber
,
N. M.
,
2010
, “
Numerical Prediction of Optimum Hollowness and Material of Hollow Rollers Under Combined Loading
,”
Mater. Des.
,
31
(
3
), pp.
1490
1496
.
17.
Ioannides
,
E.
, and
Harris
,
T. A.
,
1985
, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
,
107
(
3
), pp.
367
378
.
18.
Yao
,
Q. S.
,
Yang
,
W.
,
Yu
,
D. J.
, and
Yu
,
J. H.
,
2013
, “
Bending Stress of Rolling Element in Elastic Composite Cylindrical Roller Bearing
,”
J. Central South Univ.
,
20
(
12
), pp.
3437
3444
.
19.
Yu
,
J. H.
,
Zhang
,
R.
,
Yang
,
W.
, and
Yao
,
Q. S.
,
2015
, “
Dynamic Contact Characteristics of Elastic Composite Cylindrical Roller Bearing
,”
Open Mech. Eng. J.
,
9
(
1
), pp.
703
708
.
20.
Solanki
,
M. T.
, and
Vakharia
,
D.
,
2017
, “
A Finite Element Analysis of an Elastic Contact Between a Layered Cylindrical Hollow Roller and Flat Contact
,”
Ind. Lubr. Tribol.
,
69
(
1
), pp.
30
41
.
21.
Solanki
,
M. T.
, and
Vakharia
,
D.
,
2018
, “
Extending Hertz Equation for an Elastic Contact Between a Layered Cylindrical Hollow Roller and Flat Plate Through an Experimental Technique
,”
Ind. Lubr. Tribol.
,
69
(
2
), pp.
312
324
.
22.
Sopanen
,
J.
, and
Mikola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects-Part 1: Theory
,”
J. Multi-Body Dyn.
,
217
(
3
), pp.
201
211
.
23.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearings in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
.
24.
Arslan
,
H.
, and
Aktürk
,
N.
,
2008
, “
An Investigation of Rolling Element Vibrations Caused by Local Defects
,”
ASME J. Tribol.
,
130
(
4
), p.
041101
.
25.
Nakhaeinejad
,
M.
, and
Bryant
,
M. D.
,
2011
, “
Dynamic Modeling of Rolling Element Bearings With Surface Contact Defects Using Bond Graphs
,”
ASME J. Tribol.
,
133
(
1
), p.
011102
.
26.
Liu
,
J.
,
Shao
,
Y.
, and
Lim
,
T. C.
,
2012
, “
Vibration Analysis of Ball Bearings With a Localized Defect Applying Piecewise Response Function
,”
Mech. Mach. Theory
,
56
, pp.
156
169
.
27.
Liu
,
J.
,
Shao
,
Y.
, and
Zhu
,
W. D.
,
2015
, “
A New Model for the Relationship Between Vibration Characteristics Caused by the Time-Varying Contact Stiffness of a Deep Groove Ball Bearing and Defect Sizes
,”
ASME J. Tribol.
,
137
(
3
), p.
031101
.
28.
Ahmadi
,
A. M.
,
Petersen
,
D.
, and
Howard
,
C.
,
2015
, “
A Nonlinear Dynamic Vibration Model of Defective Bearings–the Importance of Modelling the Finite Size of Rolling Elements
,”
Mech. Syst. Signal Process.
,
52
, pp.
309
326
.
29.
Liu
,
J.
, and
Shao
,
Y. M.
,
2017
, “
Dynamic Modelling for Rigid Rotor Bearing Systems With a Localized Defect Considering Additional Deformations at the Sharp Edges
,”
J. Sound Vib.
,
398
, pp.
84
102
.
30.
Liu
,
J.
,
Shi
,
Z. F.
, and
Shao
,
Y. M.
,
2017
, “
An Analytical Model to Predict Vibrations of a Cylindrical Roller Bearing With a Localized Surface Defect
,”
Nonlinear Dyn.
,
89
(
3
), pp.
2085
2102
.
31.
Liu
,
J.
, and
Shao
,
Y.
,
2017
, “
An Improved Analytical Model for a Lubricated Roller Bearing Including a Localized Defect With Different Edge Shapes
,”
J. Vib. Control
(epub).
32.
Kıral
,
Z.
, and
Karagülle
,
H.
,
2006
, “
Vibration Analysis of Rolling Element Bearings With Various Defects Under the Action of an Unbalanced Force
,”
Mech. Syst. Signal Process.
,
20
(
8
), pp.
1967
1991
.
33.
Liu
,
J.
,
Shao
,
Y.
, and
Zuo
,
M. J.
,
2013
, “
The Effects of the Shape of Localized Defect in Ball Bearings on the Vibration Waveform
,”
J. Multi-Body Dyn.
,
227
(
3
), pp.
261
274
.
34.
Singh
,
S.
,
Köpke
,
U. G.
,
Howard
,
C. Q.
, and
Petersen, D.
,
2014
, “
Analyses of Contact Forces and Vibration Response for a Defective Rolling Element Bearing Using an Explicit Dynamics Finite Element Model
,”
J. Sound Vib.
,
333
(
21
), pp.
5356
5377
.
35.
Liu
,
J.
, and
Shao
,
Y.
,
2016
, “
A Numerical Investigation of Effects of Defect Edge Discontinuities on Contact Forces and Vibrations for a Defective Roller Bearing
,”
J. Multi-Body Dyn.
,
230
(
4
), pp.
387
400
.
36.
Chen
,
D. X.
,
2007
,
Mechanical Design Hand Book, Part 1
,
China Machine Press
,
Beijing, China
.
37.
Chen
,
J. Q.
,
Mao
,
H. B.
, and
Zhang
,
B. S.
,
2002
, “
Theory Study on Hollow Cylindrical Roller Bearing Without Preload
,”
Bearing
,
1
, pp.
1
5
.
38.
Timoshenko
,
S.
,
1978
,
Strength of Materials—Part I: Elementary (Third Edition)
,
D. Von Nostrand Company
,
New York
.
39.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1977
,
Elastohydrodynamic Lubrication (SI Edition)
,
Pergamon Press
,
Oxford, UK
.
40.
Rahnejat
,
H.
, and
Gohar
,
R.
,
1985
, “
The Vibrations of Radial Ball Bearings
,”
J. Mech. Eng. Sci.
,
199
(
3
), pp.
181
193
.
41.
Liu
,
J.
, and
Shao
,
Y.
,
2017
, “
Vibration Modelling of Nonuniform Surface Waviness in a Lubricated Roller Bearing
,”
J. Vib. Control
,
23
(
7
), pp.
1115
1132
.
42.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Rolling Element Bearing Fault Diagnosis Using Wavelet Transform
,”
Neurocomputing
,
74
(
10
), pp.
1638
1645
.
43.
Yiakopoulos
,
C. T.
,
Gryllias
,
K. C.
, and
Antoniadis
,
I. A.
,
2011
, “
Rolling Element Bearing Fault Detection in Industrial Environments Based on K-Means Clustering Approach
,”
Expert Syst. with Appl.
,
38
(
3
), pp.
2888
2911
.
You do not currently have access to this content.