Rolling contact fatigue (RCF) induces a complex subsurface stress state, which produces significant microstructural alterations within bearing steels. A novel modeling approach is presented in this paper, which investigates the effects of microstructural deterioration, phase transformations, and residual stress (RS) formation occurring within bearing steels subject to RCF. The continuum damage mechanics approach was implemented to capture microstructural decay. State and dissipation functions corresponding to the damage mechanics process were used via an energy criterion to predict the phase transformations of retained austenite (RA). Experimental measurements for RA decomposition and corresponding RS were combined to produce a function providing RS formation as a function of RA decomposition and stress history within the material. Microstructural decay, phase transformations, and internal stresses were implemented within a two-dimensional (2D) finite element analysis (FEA) line contact model to investigate variation in microstructural alterations due to RSs present within the material. In order to verify the model developed for this investigation, initial simulations were performed implementing conditions of previously published experimental work and directly comparing to observed RA decomposition and RS formation in 52100 steel deep groove ball bearings. The finite element model developed was then used to implement various RS profiles commonly observed due to manufacturing processes such as laser-shot peening and carburizing. It was found that some RS profiles are beneficial in altering RA decomposition patterns and increasing life while others proved less advantageous.

References

References
1.
Huang
,
M.
,
He
,
B.
, and
Van der Zwaag
,
S.
,
2015
, “
Effect of Free Surface on Martensitic Transformation in Individual Retained Austenite Grains
,”
International Conference on Solid–Solid Phase Transformation in Inorganic Materials
(
PTM 2015
), Whistler, BC, Canada, June 28–July 3.http://hub.hku.hk/handle/10722/214847
2.
Singh
,
K. P.
, and
Parr
,
J. G.
,
1961
, “
Thermodynamics of the Martensite Transformation
,”
Acta Metall.
,
9
(
12
), pp.
1073
1074
.
3.
Park
,
H. S.
,
Han
,
J. C.
,
Lim
,
N. S.
,
Seol
,
J.-B.
, and
Park
,
C. G.
,
2015
, “
Nano-Scale Observation on the Transformation Behavior and Mechanical Stability of Individual Retained Austenite in CMnSiAl TRIP Steels
,”
Mater. Sci. Eng. A
,
627
, pp.
262
269
.
4.
Perlade
,
A.
,
Bouaziz
,
O.
, and
Furnemont
,
Q.
,
2003
, “
A Physically Based Model for TRIP-Aided Carbon Steels Behaviour
,”
Mater. Sci. Eng. A
,
356
(
1–2
), pp.
145
152
.
5.
Wang
,
J.
, and
Van Der Zwaag
,
S.
,
2001
, “
Stabilization Mechanisms of Retained Austenite in Transformation-Induced Plasticity Steel
,”
Metall. Mater. Trans. A
,
32
(
6
), pp.
1527
1539
.
6.
Dan
,
W. J.
,
Zhang
,
W. G.
,
Li
,
S. H.
, and
Lin
,
Z. Q.
,
2007
, “
A Model for Strain-Induced Martensitic Transformation of TRIP Steel With Strain Rate
,”
Comput. Mater. Sci.
,
40
(
2
), pp.
101
107
.
7.
Blondé
,
R.
,
Jimenez-Melero
,
E.
,
Zhao
,
L.
,
Wright
,
J. P.
,
Brück
,
E.
,
der Zwaag
,
S.
, and
Van Dijk
,
N. H.
,
2012
, “
High-Energy X-Ray Diffraction Study on the Temperature-Dependent Mechanical Stability of Retained Austenite in Low-Alloyed TRIP Steels
,”
Acta Mater.
,
60
(
2
), pp.
565
577
.
9.
Oila
,
A.
,
Shaw
,
B. A.
,
Aylott
,
C. J.
, and
Bull
,
S. J.
,
2005
, “
Martensite Decay in Micropitted Gears
,”
Proc. Inst. Mech. Eng., Part J
,
219
(
2
), pp.
77
83
.
10.
Swahn
,
H.
,
Becker
,
P. C.
, and
Vingsbo
,
O.
,
1976
, “
Martensite Decay During Rolling Contact Fatigue in Ball Bearings
,”
Metall. Mater. Trans. A
,
7
(
8
), pp.
1099
1110
.
11.
Becker
,
P. C.
,
1981
, “
Microstructural Changes Around Non-Metallic Inclusions Caused by Rolling-Contact Fatigue of Ball-Bearing Steels
,”
Met. Technol.
,
8
(
1
), pp.
234
243
.
12.
Voskamp
,
A. P.
,
Österlund
,
R.
,
Becker
,
P. C.
, and
Vingsbo
,
O.
,
1980
, “
Gradual Changes in Residual Stress and Microstructure During Contact Fatigue in Ball Bearings
,”
Met. Technol.
,
7
(
1
), pp.
14
21
.
13.
Šmeļova
,
V.
,
Schwedt
,
A.
,
Wang
,
L.
,
Holweger
,
W.
, and
Mayer
,
J.
,
2017
, “
Electron Microscopy Investigations of Microstructural Alterations Due to Classical Rolling Contact Fatigue (RCF) in Martensitic AISI 52100 Bearing Steel
,”
Int. J. Fatigue
,
98
, pp.
142
154
.
14.
Muro
,
H.
, and
Tsushima
,
N.
,
1970
, “
Microstructural, Microhardness and Residual Stress Changes Due to Rolling Contact
,”
Wear
,
15
(
5
), pp.
309
330
.
15.
Morris
,
D.
,
Sadeghi
,
F.
,
Chen
,
Y.-C.
,
Wang
,
C.
, and
Wang
,
B.
,
2018
, “
A Novel Approach for Modeling Retained Austenite Transformations During Rolling Contact Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(4), pp. 831–843.
16.
Voskamp
,
A. P.
,
1985
, “
Material Response to Rolling Contact Loading
,”
ASME J. Tribol.
,
107
(
3
), pp.
359
364
.
17.
Xiao
,
Y.-C.
,
Li
,
S.
, and
Gao
,
Z.
,
1998
, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
,
20
(
7
), pp.
503
508
.
18.
Raje
,
N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
,
2008
, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
130
(
4
), p.
042201
.
19.
Raje
,
N.
,
Slack
,
T.
, and
Sadeghi
,
F.
,
2009
, “
A Discrete Damage Mechanics Model for High Cycle Fatigue in Polycrystalline Materials Subject to Rolling Contact
,”
Int. J. Fatigue
,
31
(
2
), pp.
346
360
.
20.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Liebel
,
A.
, and
Weber
,
J.
,
2013
, “
An Improved Approach for 3D Rolling Contact Fatigue Simulations With Microstructure Topology
,”
Tribol. Trans.
,
56
(
3
), pp.
385
399
.
21.
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
9
), pp.
1693
1702
.
22.
Shen
,
Y.
,
Moghadam
,
S. M.
,
Sadeghi
,
F.
,
Paulson
,
K.
, and
Trice
,
R. W.
,
2015
, “
Effect of Retained Austenite–Compressive Residual Stresses on Rolling Contact Fatigue Life of Carburized AISI 8620 Steel
,”
Int. J. Fatigue
,
75
, pp.
135
144
.
23.
Capdevila
,
C.
,
Caballero
,
F. G.
, and
de Andrés
,
C.
,
2003
, “
Analysis of Effect of Alloying Elements on Martensite Start Temperature of Steels
,”
Mater. Sci. Technol.
,
19
(
5
), pp.
581
586
.
24.
Yang
,
H.-S.
, and
Bhadeshia
,
H.
,
2009
, “
Austenite Grain Size and the Martensite-Start Temperature
,”
Scr. Mater.
,
60
(
7
), pp.
493
495
.
25.
Zener
,
C.
,
1946
, “
Kinetics of the Decomposition of Austenite
,”
Trans. AIME
,
42
(1), pp. 550–595.http://library.aimehq.org/library/books/Metals%20Technology,%201946,%20Vol.%20XIII/T.P.%201925.pdf
26.
Cohen
,
M.
,
Machlin
,
E. S.
, and
Paranjpe
,
V. G.
,
1950
, “
Thermodynamics in Physical Metallurgy
,” National Metal Congress and Exposition, Cleveland, OH, Oct. 15–21, p.
264
.
27.
Patel
,
J. R.
, and
Cohen
,
M.
,
1953
, “
Criterion for the Action of Applied Stress in the Martensitic Transformation
,”
Acta Metall.
,
1
(
5
), pp.
531
538
.
28.
Moyer
,
J. M.
, and
Ansell
,
G. S.
,
1975
, “
The Volume Expansion Accompanying the Martensite Transformation in Iron-Carbon Alloys
,”
Metall. Mater. Trans. A
,
6
(
9
), pp.
1785
1791
.
29.
Voothaluru
,
R.
,
Bedekar
,
V.
,
Xie
,
Q.
,
Stoica
,
A. D.
,
Hyde
,
R. S.
, and
An
,
K.
,
2018
, “
In-Situ Neutron Diffraction and Crystal Plasticity Finite Element Modeling to Study the Kinematic Stability of Retained Austenite in Bearing Steels
,”
Mater. Sci. Eng. A
,
711
, pp. 579–587.
30.
Withers
,
P. J.
, and
Bhadeshia
,
H.
,
2001
, “
Residual Stress—Part 2: Nature and Origins
,”
Mater. Sci. Technol.
,
17
(
4
), pp.
366
375
.
31.
Johnson
,
K. L.
, and
Hearle
,
K.
,
1987
, “
Cumulative Plastic Flow in Rolling and Sliding Line Contact
,”
ASME J. Appl. Mech.
,
54
(
1
), pp. 1–7.
32.
Warhadpande
,
A.
, and
Sadeghi
,
F.
,
2010
, “
Effects of Surface Defects on Rolling Contact Fatigue of Heavily Loaded Lubricated Contacts
,”
Proc. Inst. Mech. Eng., Part J
,
224
(
10
), pp.
1061
1077
.
33.
Warhadpande
,
A.
,
Sadeghi
,
F.
,
Kotzalas
,
M. N.
, and
Doll
,
G.
,
2012
, “
Effects of Plasticity on Subsurface Initiated Spalling in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
36
(
1
), pp.
80
95
.
34.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
,
2010
, “
A Voronoi FE Fatigue Damage Model for Life Scatter in Rolling Contacts
,”
ASME J. Tribol.
,
132
(
2
), p.
021404
.
35.
Meyer
,
S.
,
Brückner-Foit
,
A.
, and
Möslang
,
A.
,
2003
, “
A Stochastic Simulation Model for Microcrack Initiation in a Martensitic Steel
,”
Comput. Mater. Sci.
,
26
, pp.
102
110
.
36.
Walvekar
,
A. A.
, and
Sadeghi
,
F.
,
2017
, “
Rolling Contact Fatigue of Case Carburized Steels
,”
Int. J. Fatigue
,
95
, pp.
264
281
.
37.
Bai
,
M. K.
,
Pang
,
J. C.
,
Wang
,
G. D.
, and
Yi
,
H. L.
,
2016
, “
Martensitic Transformation Cracking in High Carbon Steels for Bearings
,”
Mater. Sci. Technol.
,
32
(
11
), pp.
1179
1183
.
38.
Clyne
,
T. W.
, and
Withers
,
P. J.
,
1995
,
An Introduction to Metal Matrix Composites
,
Cambridge University Press
, Cambridge, UK.
39.
Anoop
,
A. D.
,
Sekhar
,
A. S.
,
Kamaraj
,
M.
, and
Gopinath
,
K.
,
2018
, “
Modelling the Mechanical Behaviour of Heat-Treated AISI 52100 Bearing Steel With Retained Austenite
,”
Proc. Inst. Mech. Eng. Part L
,
232
(
1
), pp.
44
57
.
40.
Hatem
,
T. M.
,
2009
, “
Microstructural Modeling of Heterogeneous Failure Modes in Martensitic Steels
,”
Ph.D. dissertation
,
ProQuest
, Raleigh, NC.https://repository.lib.ncsu.edu/handle/1840.16/4016
41.
Shimizu
,
S.
,
Tsuchiya
,
K.
, and
Tosha
,
K.
,
2009
, “
Probabilistic Stress-Life (PSN) Study on Bearing Steel Using Alternating Torsion Life Test
,”
Tribol. Trans.
,
52
(
6
), pp.
807
816
.
42.
Nikitin
,
I.
, and
Altenberger
,
I.
,
2007
, “
Comparison of the Fatigue Behavior and Residual Stress Stability of Laser-Shock Peened and Deep Rolled Austenitic Stainless Steel AISI 304 in the Temperature Range 25–600 C
,”
Mater. Sci. Eng. A
,
465
(
1–2
), pp.
176
182
.
43.
Torres
,
M. A. S.
, and
Voorwald
,
H. J. C.
,
2002
, “
An Evaluation of Shot Peening, Residual Stress and Stress Relaxation on the Fatigue Life of AISI 4340 Steel
,”
Int. J. Fatigue
,
24
(
8
), pp.
877
886
.
44.
Morrow
,
J.
, and
Sinclair
,
G. M.
,
1959
, “
Cycle-Dependent Stress Relaxation
,”
Symposium on Basic Mechanisms of Fatigue
, Boston, MA, June 23, pp. 83–98.
45.
Jhansale
,
H. R.
, and
Topper
,
T. H.
,
1971
, “
Engineering Analysis of the Inelastic Stress Response of a Structural Metal Under Variable Cyclic Strains
,”
Cyclic Stress-Strain Behavior—Analysis, Experimentation, and Failure Prediction
,
ASTM International
, West conshohocken, PA.
46.
Kodama
,
S.
,
1972
, “
The Behavior of Residual Stress During Fatigue Stress Cycles
,”
International Conference on Mechanical Behavior of Metals II
, Society of Material Science, Kyoto, Japan, Aug. 15–20, pp.
111
118
.
47.
Zhuang
,
W. Z.
, and
Halford
,
G. R.
,
2001
, “
Investigation of Residual Stress Relaxation Under Cyclic Load
,”
Int. J. Fatigue
,
23
, pp.
31
37
.
48.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
49.
Totten
,
G. E.
,
2002
,
Handbook of Residual Stress and Deformation of Steel
,
ASM International
, Materials Park, OH.
You do not currently have access to this content.