Carburized gears are applied extensively in large-scale heavy duty machines such as wind turbines. The carburizing and quenching processes not only introduce variations of hardness from the case to the core but also generate a residual stress distribution, both of which affect the rolling contact fatigue (RCF) during repeated gear meshing. The influence of residual stress distribution on the RCF risk of a carburized wind turbine gear is investigated in the present work. The concept of RCF failure risk is defined by combining the local material strength and the multi-axial stress condition resulting from the contact. The Dang Van multi-axial fatigue criterion is applied. The applied stress field is calculated through an elastic-plastic contact finite element model. Residual stress distribution and the hardness profile are measured and compared with existed empirical formula. Based upon the Pavlina–Tyne relationship between the hardness and the yield strength, the gradient of the local material strength is considered in the calculation of the RCF failure risk. Effects of the initial residual stress peak value and its corresponding depth position are studied. Numerical results reveal that compressive residual stress (CRS) is beneficial to RCF fatigue life while tensile residual stress (TRS) increases the RCF failure risk. Under heavy load conditions where plasticity occurs, the accumulation of the plastic strain within the substrate is significantly affected by the initial residual stress distribution.

References

References
1.
Zhang
,
J.
,
Zhang
,
Q.
,
Wu
,
C.
,
Xu
,
Z.
, and
Lyu
,
S.
,
2014
, “
Experimental Application of Pitting Formation for 20MnCr5 Carburized Gear Tooth
,”
Int. J. Precis. Eng. Manuf.
,
15
(
5
), pp.
899
903
.
2.
Boniardi
,
M.
,
D'errico
,
F.
, and
Tagliabue
,
C.
,
2006
, “
Influence of Carburizing and Nitriding on Failure of Gears—A Case Study
,”
Eng. Failure Anal.
,
13
(
3
), pp.
312
339
.
3.
Al-Tubi
,
I. S.
, and
Long
,
H.
,
2013
, “
Prediction of Wind Turbine Gear Micropitting Under Variable Load and Speed Conditions Using ISO/TR 15144-1:2010
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
9
), pp.
1898
1914
.
4.
Boiadjiev
,
I.
,
Witzig
,
J.
,
Tobie
,
T.
, and
Stahl
,
K.
,
2014
, “
Tooth Flank Fracture—Basic Principles and Calculation Model for a Sub Surface Initiated Fatigue Failure Mode of Case Hardened Gears A2, Velex, Philippe
,”
International Gear Conference, Lyon, France, Aug. 26–28
, pp. 670–680.
5.
Beermann
,
S.
, and
Kissling
,
U.
,
2015
, “
Tooth Flank Fracture—A Critical Failure Mode Influence of Macro and Micro Geometry
,”
KISSsoft User Conference
, Pune, India, Nov. 25–26, pp.
1
14
.http://kadkraft.com/wp-content/uploads/2015/12/PRESENTATION-KISSsoft-Tooth-Flank-Fracture.pdf
6.
Zhu
,
C.
,
Sun
,
Z.
,
Liu
,
H.
,
Song
,
C.
, and
Gu
,
Z.
,
2015
, “
Effect of Tooth Profile Modification on Lubrication Performance of a Cycloid Drive
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
7
), pp.
785
794
.
7.
Anisetti
,
A.
,
2017
, “
On the Thermal and Contact Fatigue Behavior of Gear Contacts Under Tribo-Dynamic Condition
,”
Ph.D. thesis
, Wright State University, Dayton, OH.https://corescholar.libraries.wright.edu/etd_all/1711/
8.
Thomas
,
J.
,
1997
, “
Flankentragfähigkeit Und Laufverhalten Von Hartfeinbearbeiteten Kegelrädern
,” Ph.D. thesis, Technical University of Munich, Munich, Germany.
9.
Hertter
,
T.
,
2003
, “
Rechnerischer Festigkeitsnachweis Der Ermüdungstragfähigkeit Vergüteter Und Einsatzgehärteter Stirnräder
,” Ph.D. thesis, Technical University of Munich, Munich, Germany.
10.
Mackaldener
,
M.
, and
Olsson
,
M.
,
2001
, “
Tooth Interior Fatigue Fracture—Computational and Material Aspects
,”
Int. J. Fatigue
,
23
(
4
), pp.
329
340
.
11.
Weber
,
R.
,
Rotting
,
J.
,
Scholtes
,
B.
, and
Bacher-Hochst
,
M.
,
2014
, “
Load Stresses and Residual Stresses in the Tooth Interior
,”
International Gear Conference
, Lyon, France, Aug. 26–28, pp.
804
813
.
12.
Walvekar
,
A. A.
, and
Sadeghi
,
F.
,
2017
, “
Rolling Contact Fatigue of Case Carburized Steels
,”
Int. J. Fatigue
,
95
, pp.
264
281
.
13.
Dang Van
,
K.
,
Griveau
,
B.
, and
Message
,
O.
, 1989, “
On a New Multiaxial Fatigue Limit Criterion: Theory and Application
,”
Biaxial and Multiaxial Fatigue
,
Mechanical Engineering Publications
,
London
.
14.
Liu
,
H.
,
Liu
,
H.
,
Zhu
,
C.
,
Wei
,
P.
, and
Tang
,
J.
,
2018
, “
Tribological Behavior of Coated Spur Gear Pairs With Tooth Surface Roughness
,”
Friction
, epub.
15.
Liu
,
H.
,
Zhu
,
C.
,
Wang
,
Z.
,
Xu
,
X.
, and
Tang
,
J.
,
2017
, “
Investigation on the Effect of Coating Properties on Lubrication of a Coated Spur Gear Pair
,”
Proc. Inst. Mech. Eng., Part J
,
232
(3), pp.
277
290
.
16.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
17.
Liu
,
H.
,
Mao
,
K.
,
Zhu
,
C.
, and
Xu
,
X.
,
2012
, “
Mixed Lubricated Line Contact Analysis for Spur Gears Using a Deterministic Model
,”
ASME J. Tribol.
,
134
(
2
), p. 021501.
18.
Ciavarella
,
M.
, and
Maitournam
,
H.
,
2004
, “
On the Ekberg, Kabo and Andersson Calculation of the Dang Van High Cycle Fatigue Limit for Rolling Contact Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
6
), pp.
523
526
.
19.
Hua
,
Q.
,
2005
, “
Prediction of Contact Fatigue for the Rough Surface Elastohydrodynamic Lubrication Line Contact Problem Under Rolling and Sliding Conditions
,”
Ph.D. thesis
, Cardiff University, Cardiff, UK.http://orca.cf.ac.uk/56019/
20.
Balart
,
M.
,
Bouzina
,
A.
,
Edwards
,
L.
, and
Fitzpatrick
,
M.
,
2004
, “
The Onset of Tensile Residual Stresses in Grinding of Hardened Steels
,”
Mater. Sci. Eng. A
,
367
(
1–2
), pp.
132
142
.
21.
Parrish
,
G.
, and
Harper
,
G.
,
2013
,
Production Gas Carburising: The Pergamon Materials Engineering Practice Series
,
Elsevier
, New York.
22.
Branch
,
N. A.
,
Subhash
,
G.
,
Arakere
,
N. K.
, and
Klecka
,
M. A.
,
2011
, “
A New Reverse Analysis to Determine the Constitutive Response of Plastically Graded Case Hardened Bearing Steels
,”
Int. J. Solids Struct.
,
48
(
3–4
), pp.
584
591
.
23.
Choi
,
I. S.
,
Dao
,
M.
, and
Suresh
,
S.
,
2008
, “
Mechanics of Indentation of Plastically Graded Materials—I: Analysis
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
157
171
.
24.
Pavlina
,
E. J.
, and
Tyne
,
C. J. V.
,
2008
, “
Correlation of Yield Strength and Tensile Strength With Hardness for Steels
,”
J. Mater. Eng. Performance
,
17
(
6
), pp.
888
893
.
25.
Suresh
,
S.
,
2006
,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge, UK
.
26.
Warhadpande
,
A.
,
2012
, “
An Elastic-Plastic Finite Element Model for Rolling Contact Fatigue
,”
Ph.D. thesis
, Purdue University, West Lafayette, IN.https://docs.lib.purdue.edu/dissertations/AAI3544576/
27.
Brandão
,
J. A.
,
Seabra
,
J. H. O.
, and
Castro
,
J.
,
2010
, “
Surface Initiated Tooth Flank Damage: Part I: Numerical Model
,”
Wear
,
268
(
1–2
), pp.
1
12
.
28.
Cerullo
,
M.
,
2013
, “
Application of Dang Van Criterion to Rolling Contact Fatigue in Wind Turbine Roller Bearings
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
12
), pp.
2079
2089
.
29.
Lieshout
,
P. S. V.
,
Besten
,
J. H. D.
, and
Kaminski
,
M. L.
,
2017
, “
Validation of the Corrected Dang Van Multiaxial Fatigue Criterion Applied to Turret Bearings of FPSO Offloading Buoys
,”
Ships Offshore Struct.
,
12
(
4
), pp.
521
529
.
30.
Desimone
,
H.
,
Bernasconi
,
A.
, and
Beretta
,
S.
,
2006
, “
On the Application of Dang Van Criterion to Rolling Contact Fatigue
,”
Wear
,
260
(
4–5
), pp.
567
572
.
31.
Evans
,
H. P.
,
Snidle
,
R. W.
,
Sharif
,
K. J.
, and
Bryant
,
M. J.
,
2012
, “
Predictive Modelling of Fatigue Failure in Concentrated Lubricated Contacts
,”
Faraday Discuss.
,
156
, pp.
105
121
.
You do not currently have access to this content.