In recent years, through the development of three-dimensional (3D) printing technology, 3D‐printed parts have been used in various industries, such as medical equipment and robotics. Various 3D printing methods have been developed. Today, a 3D printer can be used even in precision parts, such as bolts and bearings. In this study, journal bearings are manufactured by a 3D printer to evaluate friction performance and self-lubricating performance. The journal bearings are fabricated using two types of 3D printing method: fused deposition modeling (FDM) and selective laser sintering (SLS). The specimens manufactured by FDM are produced by plastic materials with three-layer thicknesses. Nylon-based materials and aluminum-based materials are used to fabricate the SLS specimen. Micropores are created in the specimens during the printing process. Therefore, the self-lubricating performance can occur by micropores. The experimental setup is designed and constructed to evaluate the friction performance by varying rotational speed and the radial load. Through this study, the self-lubricating performance and friction performance of 3D-printed journal bearings are evaluated, and proper operating conditions for 3D-printed bearings are suggested.

References

1.
Feng
,
P.
,
Meng
,
X.
,
Chen
,
J.-F.
, and
Ye
,
L.
,
2015
, “
Mechanical Properties of Structures 3D Printed With Cementitious Powders
,”
Constr. Build. Mater.
,
93
, pp.
486
497
.
2.
Lee
,
J.-Y.
,
An
,
J.
, and
Chua
,
C. K.
,
2017
, “
Fundamentals and Applications of 3D Printing for Novel Materials
,”
Appl. Mater. Today
,
7
, pp.
120
133
.
3.
Gnanasekarana
,
K.
,
Heijmans
,
T.
,
Van Bennekom
,
S.
,
Woldhuis
,
H.
,
Wijnia
,
S.
, and
Friedrich
,
H.
,
2017
, “
3D Printing of CNT- and Graphene-Based Conductive Polymer Nanocomposites by Fused Deposition Modeling
,”
Appl. Mater. Today
,
9
, pp.
21
28
.
4.
Flores
,
R. L.
,
Liss
,
H.
,
Raffaelli
,
S.
,
Humayun
,
A.
,
Khouri
,
K. S.
,
Coelho
,
P. G.
, and
Witek
,
L.
,
2017
, “
The Technique for 3D Printing Patient-Specific Models for Auricular Reconstruction
,”
J. Cranio-Maxillofacial Surg.
,
45
(
6
), pp.
937
943
.
5.
Ackland
,
D. C.
,
Robinson
,
D.
,
Redhead
,
M.
,
Lee
,
P. V. S.
,
Moskaljuk
,
A.
, and
Dimitroulis
,
G.
,
2017
, “
A Personalized 3D-Printed Prosthetic Joint Replacement for the Human Temporomandibular Joint: From Implant Design to Implantation
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
404
411
.
6.
Agarwala
,
S.
,
Goh
,
G. L.
,
Yap
,
Y. L.
,
Goh
,
G. D.
,
Yu
,
H.
,
Yeong
,
W. Y.
, and
Tran
,
T.
,
2017
, “
Development of Bendable Strain Sensor With Embedded Microchannels Using 3D Printing
,”
Sens. Actuators A
,
263
, pp.
593
599
.
7.
Kesner
,
S. B.
, and
Howe
,
R. D.
,
2011
, “
Design Principles for Rapid Prototyping Forces Sensors Using 3-D Printing
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
866
870
.
8.
Clifford
,
B.
,
Beynon
,
D.
,
Phillips
,
C.
, and
Deganello
,
D.
,
2018
, “
Printed-Sensor-on-Chip Devices – Aerosol Jet Deposition of Thin Film Relative Humidity Sensors Onto Packaged Integrated Circuits
,”
Sens. Actuators, B
,
255
(
Pt. 1
), pp.
1031
1038
.
9.
Zhang
,
F.
,
Wei
,
M.
,
Viswanathan
,
V. V.
,
Swart
,
B.
,
Shao
,
Y.
,
Wu
,
G.
, and
Zhou
,
C.
,
2017
, “
3D Printing Technologies for Electrochemical Energy Storage
,”
Nano Energy
,
40
, pp.
418
431
.
10.
Mu
,
Q.
,
Wang
,
L.
,
Dunn
,
C. K.
,
Kuang
,
X.
,
Duan
,
F.
,
Zhang
,
Z.
,
Qi
,
H. J.
, and
Wang
,
T.
,
2017
, “
Digital Light Processing 3D Printing of Conductive Complex Structures
,”
Addit. Manuf.
,
18
, pp.
74
83
.
11.
Brito
,
F. P.
,
Miranda
,
A. S.
,
Claro
,
J. C. P.
, and
Fillon
,
M.
,
2012
, “
Experimental Comparison of the Performance of a Journal Bearing With a Single and a Twin Axial Groove Configuration
,”
Tribol. Int.
,
54
, pp.
1
8
.
12.
Koszela
,
W.
,
Pawlus
,
P.
, and
Galda
,
L.
,
2007
, “
The Effect of Oil Pockets Size and Distribution on Wear in Lubricated Sliding
,”
Wear
,
263
(
7–12
), pp.
1585
1592
.
13.
Leong
,
J. C.
, and
Lai
,
F. C.
,
2012
, “
Visualization of Flow in a Sintered Journal Bearing Through Hele-Shaw Analogy
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
228
236
.
14.
Koike
,
H.
,
Kida
,
K.
,
Santos
,
E. C.
,
Rozwadowska
,
J.
,
Kashima
,
Y.
, and
Kanemasu
,
K.
,
2012
, “
Self-Lubrication of PEEK Polymer Bearings in Rolling Contact Fatigue Under Radial Loads
,”
Tribol. Int.
,
49
, pp.
30
38
.
15.
Espallargas
,
N.
,
Vitoux
,
L.
, and
Armada
,
S.
,
2013
, “
The Wear and Lubrication Performance of Liquid–Solid Self-Lubricated Coatings
,”
Surf. Coat. Technol.
,
235
, pp.
342
353
.
16.
Villavicencio
,
M. D.
,
Renouf
,
M.
,
Saulot
,
A.
,
Michel
,
Y.
,
Mahéo
,
Y.
,
Colas
,
G.
,
Filleter
,
T.
, and
Berthier
,
Y.
,
2017
, “
Self-Lubricating Composite Bearings: Effect of Fibre Length on Its Tribological Properties by DEM Modelling
,”
Tribol. Int.
,
113
, pp.
362
369
.
17.
Wang
,
J.
,
Zhao
,
H.
,
Huang
,
W.
, and
Wang
,
X.
,
2017
, “
Investigation of Porous Polyimide Lubricant Retainers to Improve the Performance of Rolling Bearings Under Conditions of Starved Lubrication
,”
Wear
,
380
, pp.
52
58
.
18.
Repka
,
M.
,
Dörr
,
N.
,
Brenner
,
J.
,
Gabler
,
C.
,
McAleese
,
C.
,
Ishigo
,
O.
, and
Koshima
,
M.
,
2017
, “
Lubricant-Surface Interactions of Polymer-Coated Engine Journal Bearings
,”
Tribol. Int.
,
109
, pp.
519
528
.
19.
Cui
,
H.
,
Wang
,
Y.
,
Yue
,
X.
,
Huang
,
M.
, and
Wang
,
W.
,
2017
, “
Effects of Manufacturing Errors on the Static Characteristics of Aerostatic Journal Bearings With Porous Restrictor
,”
Tribol. Int.
,
115
, pp.
246
260
.
20.
Qiu
,
M.
,
Yang
,
Z.
,
Lu
,
J.
,
Li
,
Y.
, and
Zhou
,
D.
,
2017
, “
Influence of Step Load on Tribological Properties of Self-Lubricating Radial Spherical Plain Bearings With PTFE Fabric Liner
,”
Tribol. Int.
,
113
, pp.
344
353
.
21.
He
,
Y.
,
Sun
,
W. T.
,
Wang
,
S. C.
,
Reed
,
P. A. S.
, and
Walsh
,
F. C.
,
2017
, “
An Electrodeposited Ni-P-WS2 Coating With Combined Super-Hydrophobicity and Self-Lubricating Properties
,”
Electrochim. Acta
,
245
, pp.
872
882
.
You do not currently have access to this content.