A thermohydrodynamic lubrication model of turbulent cavitating flow for high-speed spiral groove thrust bearing was developed considering the effects of cavitation, turbulence, inertia, breakage, and coalescence of bubbles. Comparing with the classical thermohydrodynamic model, this model can predict not only the distributions of pressure and temperature rise but also the distribution of bubble volume and bubble number density. Static characteristics of the water-lubricated spiral groove thrust bearing in the state of turbulent cavitating flow were analyzed, and the influences of multiple effects on the static characteristics of the bearing were researched. The numerical calculation result shows that the bubbles are mainly distributed in inlet and outlet of the spiral groove, the distribution of bubble volume is skewed under the equilibrium state, and small bubbles account for a large proportion of the cavitating flow under high-speed condition. Furthermore, the load carrying capacity and the leakage flow of the bearing decrease due to the effect of cavitation under high-speed. The maximum temperature rise of the bearing decreases due to the effect of cavitation effect.

References

References
1.
Murata
,
S.
,
1979
, “
Exact Two-Dimensional Analysis of Circular Disk Spiral-Groove Bearing
,”
ASME J. Tribol.
,
101
(
4
), pp.
424
430
.
2.
Elrod
,
H. G.
,
1973
, “
Some Refinements of the Theory of the Viscous Screw Pump
,”
ASME J. Tribol.
,
95
(
1
), pp.
82
93
.
3.
Muijderman
,
E. A.
,
1966
,
Spiral Groove Bearings
,
Springer-Verlag
,
New York
.
4.
Chen, W.
,
Wang, F.
, and
Zhang, Y.
, 2010, “
The Flow Field Simulation of a Novel Water-Lubricated Hybrid Bearing for High-Speed Spindle
,”
ASME
Paper No. IJTC2010-41046.
5.
Yoshimoto
,
S.
,
Oshima, S.
,
Danbara, S.
, and
Shitara, T.
,
2002
, “
Stability of Water-Lubricated, Hydrostatic, Conical Bearings With Spiral Grooves for High-Speed Spindles
,”
ASME J. Tribol.
,
124
(
2
), pp.
398
405
.
6.
Wang, L.
,
Xu, H.
, and
Ma, S.
, 2012, “
Experimental Study on Dynamic Coeffcients of Water Lubricated High-Speed Hybrid Bearings With Stepped Recesses
,”
International Mechanical Engineering Congress and Exposition
, Houston, TX, Nov. 9–15, pp. 2183–2187.https://www.tib.eu/de/suchen/id/BLCP%3ACN084513610/IMECE2012-86486-Experimental-Studies-on-Wake-Induced/
7.
Lin, X.
,
Jiang, S.
,
Zhang, C.
, and
Liu, X.
, 2018, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence
,”
Tribol. Int.
,
119
, pp. 645–658.
8.
Slocum
,
A. H.
,
Scagnetti
,
P. A.
,
Kane
,
N. R.
, and
Brunner
,
C.
,
1995
, “
Design of Self-Compensated Water-Hydrostatic Bearings
,”
Precis. Eng.
,
17
(
3
), pp.
173
185
.
9.
Yoshimoto
,
S.
,
Anno
,
Y.
,
Tamura
,
M.
,
Kakiuchi
,
Y.
, and
Kimura
,
K.
,
1965
, “
Axial Load Carrying Capacity of Water-Lubricated Hydrostatic Conical Bearings With Spiral Grooves (On the Case of Rigid Surface Bearings)
,”
Trans. ASME
,
118
(
4
), pp.
893
899
.
10.
Liu
,
F.
,
Lin
,
B.
, and
Zhang
,
X.
,
2008
, “
Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings
,”
Int. J. Precis. Eng. Manuf.
,
9
(
1
), pp.
47
50
.
11.
Durazo-Cardenas
,
I. S.
,
Corbett
,
J.
, and
Stephenson
,
D. J.
,
2010
, “
The Performance of a Porous Ceramic Hydrostatic Journal Bearing
,”
Proc. Inst. Mech. Eng.
,
224
(
1
), pp.
81
89
.
12.
Xiu
,
L. Z.
,
Zhong
,
W. Y.
, and
Dan
,
J.
,
2014
, “
The Design of Hydrodynamic Water-Lubricated Step Thrust Bearings Using CFD Method
,”
Mech. Ind.
,
15
(
3
), pp.
197
206
.
13.
Makoto
,
G.
,
Kei
,
S.
,
Masaaki
,
M.
, and
Shigeka
,
Y.
,
2014
, “
Static Characteristics of a Water-Lubricated Hydrostatic Thrust Bearing Using a Membrane Restrictor
,”
Tribol. Int.
,
75
, pp.
111
116
.
14.
Ng
,
C. W.
, and
Pan
,
C.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
ASME J. Fluids Eng.
,
87
(
3
), pp.
675
682
.
15.
Ni
,
J.
,
Wang
,
G.
, and
Zhang
,
H.
,
1991
,
The Basic Theory of Solid Liquid Two-Phase Flow and Its Latest Applications
,
Science Press
,
Beijing, China
, pp.
35
52
.
16.
Sahu
,
M.
,
Giri
,
A. K.
, and
Das
,
A.
,
2012
, “
Thermohydrodynamic Analysis of a Journal Bearing Using CFD as a Tool
,”
Int. J. Sci. Res. Publ.
,
2
(
9
), pp.
1
7
.http://www.ijsrp.org/research-paper-0912.php?rp=P09143
17.
Zhang
,
Z.
,
Zhang
,
Y.
,
Xie
,
Y.
,
Chen
,
Z.
,
Qiu
,
D.
, and
Zhun
,
J.
,
1986
,
Hydrodynamics Lubrication Theory of the Journal Bearing
,
Higher Education Press
,
Beijing, China
, pp.
108
118
.
18.
Guo
,
L.
,
2002
,
Two-Phase and Multiphase Flow Dynamics
,
Xi'an Jiaotong University Press
,
Xi'an, China
, p.
430
.
19.
Kubota
,
A.
,
Kato
,
H.
,
Yamaguchi
,
H.
, and
Maeda
,
M.
,
1989
, “
Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Technique
,”
ASME J. Fluids Eng.
,
111
(
2
), pp.
204
210
.
20.
Lehr
,
F.
, and
Mewes
,
D.
,
2001
, “
A Transport Equation for Interfacial Area Density Applied to Bubble Columns
,”
Chem. Eng. Sci.
,
56
(
3
), pp.
1159
1166
.
21.
Yi
,
X. L.
, and
Dirk
,
L.
,
2010
, “
A Literature Review on Mechanisms and Models for the Coalescence Process of Fluid Particles
,”
Chem. Eng. Sci.
,
65
(
10
), pp.
2851
2864
.
22.
Chesters
,
A. K.
,
1991
, “
The Modeling of Coalescence Processes in Fluid-Liquid Dispersions: A Review of Current Understanding
,”
Chem. Eng. Res. Des.: Trans. Inst. Chem. Eng.: Part A
,
69
(A4), pp.
259
270
.https://research.tue.nl/en/publications/the-modelling-of-coalescence-processes-in-fluid-liquid-dispersion
23.
Sovova
,
H.
,
1981
, “
Breakage and Coalescence of Drops in a Batch Stirred Vessel-II Comparison of Model and Experiments
,”
Chem. Eng. Sci.
,
36
(
9
), pp.
1567
1573
.
24.
Yimin
,
Z.
,
Chao
,
W.
,
Shihua
,
Y.
, and
Jibin
,
H.
,
2016
, “
Theoretical and Experimental Study of Cavitation Effects on the Dynamic Characteristic of Spiral-Groove Rotary Seals
,”
Tribol. Lett.
,
64
(3), p.
50
.
25.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2011
, “
Investigation of Tribological Behaviors of Annular Rings With Spiral Groove
,”
Tribol. Int.
,
44
(
12
), pp.
1610
1619
.
26.
Lehr
,
F.
,
Millies
,
M.
, and
Mewes
,
D.
,
2002
, “
Bubble-Size Distributions and Flow Fields in Bubble Columns
,”
AIChE J.
,
48
(
11
), pp.
2426
2443
.
You do not currently have access to this content.