This study proposed a physics-based heuristic modeling for the nonlinear constitutive relation of bolted joints based on the Iwan model accompanying with the rough surface contact theory. The approach led to an Iwan distribution function which possesses the tribology-related features of the contact interface. In particular, the break-free force distribution function of the Jenkins elements could be expressed in terms of height distribution of surface asperities. The model considered the contribution of elastically, elasto-plastically as well as plastically deformed asperities to the total tangential loads. Following this, constitutive relations for lap-type bolted joints and the corresponding backbone curves, hysteresis loops, and energy dissipation per cycle were obtained. A model application was implemented and the results were compared with the published experimental results. The proposed model agrees very well with the experimental results when the contact parameters met the actual contact situation. The obtained results indicated that the model can be used to study the tangential behaviors of rough surfaces.

References

References
1.
Xiao
,
H.
,
Shao
,
Y.
, and
Xu
,
J.
,
2014
, “
Investigation Into the Energy Dissipation of a Lap Joint Using the One-Dimensional Microslip Friction Model
,”
Eur. J. Mech. A/Solids
,
43
, pp.
1
8
.
2.
Ouyang
,
H.
,
Oldfield
,
M. J.
, and
Mottershead
,
J. E.
,
2006
, “
Experimental and Theoretical Studies of a Bolted Joint Excited by a Torsional Dynamic Load
,”
Int. J. Mech. Sci.
,
48
(
12
), pp.
1447
1455
.
3.
Padmanabhan
,
K. K.
, and
Murty
,
A. S. R.
,
1991
, “
Damping in Structural Joints Subjected to Tangential Loads
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
,
205
(
2
), pp.
121
129
.
4.
Etsion
,
I.
,
2010
, “
Revisiting the Cattaneo–Mindlin Concept of Interfacial Slip in Tangentially Loaded Compliant Bodies
,”
ASME J. Tribol.
,
132
(
2
), p.
020801
.
5.
Paggi
,
M.
,
Pohrt
,
R.
, and
Popov
,
V. L.
,
2014
, “
Partial-Slip Frictional Response of Rough Surfaces
,”
Sci. Rep.
,
4
(
1
), p.
5178
.
6.
Popov
,
V. L.
,
2013
, “
Method of Reduction of Dimensionality in Contact and Friction Mechanics: A Linkage Between Micro and Macro Scales
,”
Friction
,
1
(
1
), pp.
41
62
.
7.
Popov
,
V. L.
, and
Heß
,
M.
,
2015
,
Method of Dimensionality Reduction in Contact Mechanics and Friction
,
Springer
,
Berlin
.
8.
Argatov
,
I. I.
, and
Butcher
,
E. A.
,
2011
, “
On the Iwan Models for Lap-Type Bolted Joints
,”
Int. J. Non-Linear Mech.
,
46
(
2
), pp.
347
356
.
9.
Segalman
,
D. J.
,
2005
, “
A Four-Parameter Iwan Model for Lap-Type Joints
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
752
760
.
10.
Ahmadian
,
H.
, and
Rajaei
,
M.
,
2014
, “
Identification of Iwan Distribution Density Function in Frictional Contacts
,”
J. Sound Vib.
,
333
(
15
), pp.
3382
3393
.
11.
Li
,
Y.
, and
Hao
,
Z.
,
2016
, “
A Six-Parameter Iwan Model and Its Application
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
354
365
.
12.
Segalman
,
D. J.
, and
Starr
,
M. J.
,
2008
, “
Inversion of Masing Models Via Continuous Iwan Systems
,”
Int. J. Non-Linear Mech.
,
43
(
1
), pp.
74
80
.
13.
Brake
,
M. R. W.
,
2017
, “
A Reduced Iwan Model That Includes Pinning for Bolted Joint Mechanics
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1335
1349
.
14.
Zhang
,
X. M.
,
Wang
,
B. L.
, and
Wei
,
H. T.
,
2012
, “
Calculation of Nonlinear Restoring Forces and Energy Dissipation of Iwan Model
,”
Eng. Mech.
,
29
(
11
), pp.
33
39
(in Chinese).
15.
Iwan
,
W. D.
,
1966
, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
893
900
.
16.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
17.
Segalman
,
D. J.
,
2001
, “
An Initial Overview of Iwan Modeling for Mechanical Joints
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2001-0811
.
18.
Shiryayev
,
O. V.
,
Page
,
S. M.
,
Pettit
,
C. L.
, and
Slater
,
J. C.
,
2007
, “
Parameter Estimation and Investigation of a Bolted Joint Model
,”
J. Sound Vib.
,
307
(
3–5
), pp.
680
697
.
19.
Bograd
,
S.
,
Reuss
,
P.
,
Schmidt
,
A.
,
Gaul
,
L.
, and
Mayer
,
M.
,
2011
, “
Modeling the Dynamics of Mechanical Joints
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
2801
2826
.
20.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2010
, “
Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2554
2567
.
21.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2010
, “
Surface Roughness Effects on Energy Dissipation in Fretting Contact of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021011
.
22.
Wang
,
D.
,
Xu
,
C.
, and
Wan
,
Q.
,
2017
, “
Modeling Tangential Contact of Rough Surfaces With Elastic and Plastic Deformed Asperities
,”
ASME J. Tribol.
,
139
(
5
), p.
051401
.
23.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
295
(
1442
), pp.
300
319
.
24.
Masing
,
G.
,
1926
, “
Eigenspannungen Und Verfestigung Beim Messign (Self-Stretching and Hardening for Brass)
,”
Second International Congress on Applied Mechanics
, Zürich, Switzerland, Sept. 12–17, pp.
332
335
.
25.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Physics-Based Modeling for Fretting Behavior of Nominally Flat Rough Surfaces
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1436
1450
.
26.
Rabinowicz
,
E.
,
1995
,
Friction and Wear of Materials
,
2nd ed.
, Wiley, New York.
27.
Chang
,
W.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
28.
Brizmer
,
V.
,
Zait
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
The Effect of Contact Conditions and Material Properties on Elastic-Plastic Spherical Contact
,”
J. Mech. Mater. Struct.
,
1
(
5
), pp.
865
879
.
29.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic–Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
You do not currently have access to this content.