A novel hybrid polymer nanocomposite coating of ultrahigh molecular weight polyethylene (UHMWPE) reinforced with nanoclay (C15A) and carbon nanotubes (CNTs) has been developed to protect metallic mating surfaces in tribological applications. The hybrid nanocomposite coatings were deposited on aluminum substrates using an electrostatic spraying technique. Ball-on-disk wear tests using a 440C stainless steel ball as the counterface were conducted on the coatings under dry conditions to determine the optimum amount of the loadings of the nanofillers and evaluate their tribological performance at different normal loads and linear velocities. Micro-indentation, raman spectroscopy, scanning electron microscopy (SEM), and optical profilometry techniques were used to characterize the coatings in terms of hardness, dispersion of the nanofillers, morphology, and wear mechanisms, respectively. Results showed that the UHMWPE hybrid nanocomposite coating reinforced with 1.5 wt % of C15A nanoclay and 1.5 wt % of CNTs did not fail even until 100,000 cycles at a normal load of 12 N and a linear speed of 0.1 m/s showing a significant improvement in wear resistance as compared to all other coatings evaluated in this study.

References

References
1.
Briscoe
,
B. J.
, and
Sinha
,
S. K.
,
2013
, “
Chapter 1—Tribological Applications of Polymers and Their Composites–Past, Present and Future Prospects
,”
Tribology of Polymeric Nanocomposites
,
2nd ed.
,
K.
Friedrich
and
A. K.
Schlarb
, eds.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
1
22
.
2.
Stein
,
H. L.
,
1999
,
Ultra High Molecular Weight Polyethylene (UHMWPE)
,
Ticona LLC/ASM International
,
Materials Park, OH
.
3.
Bakshi
,
S. R.
,
Tercero
,
J. E.
, and
Agarwal
,
A.
,
2007
, “
Synthesis and Characterization of Multiwalled Carbon Nanotube Reinforced Ultra-High Molecular Weight Polyethylene Composite by Electrostatic Spraying Technique
,”
Compos. Part A
,
38
(
12
), pp.
2493
2499
.
4.
Kumar
,
R. M.
,
Kumar
,
S.
,
Kumar
,
B. V. M.
, and
Lahiri
,
D.
,
2015
, “
Effects of Carbon Nanotube Aspect Ratio on Strengthening and Tribological Behavior of Ultra-High Molecular Weight Polyethylene Composite
,”
Compos. Part A
,
76
, pp.
62
72
.
5.
Liu
,
P.
,
White, K. L.
,
Sugiyama, H.
,
Xi, J.
,
Higuchi, T.
,
Hoshino, T.
,
Ishige, R.
,
Jinnai, R.
,
Takahara, A.
, and
Sue, H.-J.
,
2013
, “
Influence of Trace Amount of Well-Dispersed Carbon Nanotubes on Structural Development and Tensile Properties of Polypropylene
,”
Macromolecules
,
46
(
2
), pp.
463
473
.
6.
Chu
,
C.-C.
,
White
,
K. L.
,
Liu
,
P.
,
Zhang
,
X.
, and
Sue
,
H.-J.
,
2012
, “
Electrical Conductivity and Thermal Stability of Polypropylene Containing Disentangled Carbon Nanotubes
,”
Carbon
,
50
(
12
), pp.
4711
4721
.
7.
Mohammed, A. S.
,
Ali
,
A. B.
, and
Merah
,
N.
,
2017
, “
Evaluation of Tribological Properties of Organoclay Reinforced UHMWPE Nanocomposites
,”
ASME J. Tribol.
,
139
(
1
), p. 012001.
8.
Mohammed, A. S.
,
Ali
,
A. B.
, and
Merah
,
N.
,
2016
, “
Tribological Investigations of UHMWPE Nanocomposites Reinforced With Three Different Organo-Modified Clays
,”
Polym. Compos.
, epub.
9.
Plumlee
,
K.
, and
Schwartz
,
C. J.
,
2009
, “
Improved Wear Resistance of Orthopaedic UHMWPE by Reinforcement With Zirconium Particles
,”
Wear
,
267
(
5–8
), pp.
710
717
.
10.
Alam
,
F.
,
Kumar
,
A.
,
Patel
,
A. K.
,
Sharma
,
R. K.
, and
Balani
,
K.
,
2015
, “
Processing, Characterization and Fretting Wear of Zinc Oxide and Silver Nanoparticles Reinforced Ultra-High Molecular Weight Polyethylene Biopolymer Nanocomposite
,”
J. Miner. Met. Mater. Soc.
,
67
(
4
), pp.
688
701
.
11.
Mirsalehi
,
S. A.
,
Khavandi
,
A.
,
Mirdamadi
,
S.
,
Naimi-Jamal
,
M. R.
, and
Kalantari
,
S. M.
,
2015
, “
Nanomechanical and Tribological Behavior of Hydroxyapatite Reinforced Ultrahigh Molecular Weight Polyethylene Nanocomposites for Biomedical Applications
,”
J. Appl. Polym. Sci.
,
132
(
23
), pp.
1
11
.
12.
Tai
,
Z.
,
Chen
,
Y.
,
An
,
Y.
,
Yan
,
X.
, and
Xue
,
Q.
,
2012
, “
Tribological Behavior of UHMWPE Reinforced With Graphene Oxide Nanosheets
,”
Tribol. Lett.
,
46
(
1
), pp.
55
63
.
13.
Bhattacharyya
,
A.
,
Chen
,
S.
, and
Zhu
,
M.
,
2014
, “
Graphene Reinforced Ultra-High Molecular Weight Polyethylene With Improved Tensile Strength and Creep Resistance Properties
,”
Express Polym. Lett.
,
8
(
2
), pp.
74
84
.
14.
Mohammed, A. S.
, and
Fareed
,
M. I.
,
2016
, “
Improving the Friction and Wear of Poly-Ether-Etherketone (PEEK) by Using Thin Nano-Composite Coatings
,”
Wear
,
364–365
, pp.
154
162
.
15.
Samad
,
M. A.
, and
Sinha
,
S. K.
,
2011
, “
Mechanical, Thermal and Tribological Characterization of a UHMWPE Film Reinforced With Carbon Nanotubes Coated on Steel
,”
Tribol. Int.
,
44
(
12
), pp.
1932
1941
.
16.
Chih
,
A.
,
Ansón-Casaos
,
A.
, and
Puértolas
,
J. A.
,
2017
, “
Frictional and Mechanical Behaviour of Graphene/UHMWPE Composite Coatings
,”
Tribol. Int.
,
116
, pp.
295
302
.
17.
Ravi
,
K.
,
Ichikawa
,
Y.
,
Ogawa
,
K.
,
Deplancke
,
T.
,
Lame
,
O.
, and
Cavaille
,
J. Y.
,
2016
, “
Mechanistic Study and Characterization of Cold-Sprayed Ultra-High Molecular Weight Polyethylene-Nano-Ceramic Composite Coating
,”
J. Therm. Spray Technol.
,
25
(
1–2
), pp.
160
169
.
18.
Azam
,
M. U.
, and
Samad
,
M. A.
,
2018
, “
A Novel Organoclay Reinforced UHMWPE Nanocomposite Coating for Tribological Applications
,”
Prog. Org. Coat.
,
118
, pp.
97
107
.
19.
Gbadeyan
,
O. J.
, and
Kanny
,
K.
,
2018
, “
Tribological Behaviours of Polymer-Based Hybrid Nanocomposite Brake Pad
,”
ASME J. Tribol.
,
140
(3), p. 032003.
20.
Ali
,
A. B.
,
Mohammed, A. S.
, and
Merah
,
N.
,
2017
, “
UHMWPE Hybrid Nanocomposites for Improved Tribological Performance Under Dry and Water-Lubricated Sliding Conditions
,”
Tribol. Lett.
,
65
(
3
), pp.
1
10
.
21.
Shen
,
X.
,
Pei
,
X.
,
Liu
,
Y.
, and
Fu
,
S.
,
2014
, “
Tribological Performance of Carbon Nanotube—Graphene Oxide Hybrid/Epoxy Composites
,”
Compos. Part B
,
57
, pp.
120
125
.
22.
Liu
,
M.
,
Zhu
,
H.
,
Siddiqui
,
N. A.
,
Leung
,
C. K. Y.
, and
Kim
,
J.
,
2011
, “
Glass Fibers With Clay Nanocomposite Coating: Improved Barrier Resistance in Alkaline Environment
,”
Compos. Part A
,
42
(
12
), pp.
2051
2059
.
23.
Kowalczyk
,
K.
, and
Spychaj
,
T.
,
2008
, “
Epoxy Coatings With Modified Montmorillonites
,”
Prog. Org. Coat.
,
62
(
4
), pp.
425
429
.
24.
Golgoon
,
A.
,
Aliofkhazraei
,
M.
,
Toorani
,
M.
,
Moradi
,
M. H.
, and
Rouhaghdam
,
A. S.
,
2015
, “
Corrosion and Wear Properties of Nanoclay-Polyester Nanocomposite Coatings Fabricated by Electrostatic Method
,”
Procedia Mater. Sci.
,
11
, pp.
536
541
.
25.
Yeh
,
J. M.
,
Liou
,
S. J.
,
Lu
,
H. J.
, and
Huang
,
H. Y.
,
2004
, “
Enhancement of Corrosion Protection Effect of Poly(Styrene-Co-Acrylonitrile) by the Incorporation of Nanolayers of Montmorillonite Clay Into Copolymer Matrix
,”
J. Appl. Polym. Sci.
,
92
(
4
), pp.
2269
2277
.
26.
Gbadeyan
,
O. J.
,
Kanny
,
K.
, and
Pandurangan
,
M. T.
,
2017
, “
Tribological, Mechanical, and Microstructural of Multiwalled Carbon Nanotubes/Short Carbon Fiber Epoxy Composites
,”
ASME J. Tribol.
,
140
(
2
), p.
022002
.
27.
May-Pat
,
A.
,
Avilés
,
F.
,
Toro
,
P.
,
Yazdani-Pedram
,
M.
, and
Cauich-Rodríguez
,
J. V.
,
2012
, “
Mechanical Properties of PET Composites Using Multiwalled Carbon Nanotubes Functionalized by Inorganic and Itaconic Acids
,”
Express Polym. Lett.
,
6
(
2
), pp.
96
106
.
28.
Wu
,
C. S.
, and
Liao
,
H. T.
,
2017
, “
Interface Design of Environmentally Friendly Carbon Nanotube-Filled Polyester Composites: Fabrication, Characterisation, Functionality and Application
,”
Express Polym. Lett.
,
11
(
3
), pp.
187
198
.
29.
Sinha
,
S. K.
,
Lee
,
C. B.
, and
Lim
,
S. C.
,
2008
, “
Tribological Performance of UHMWPE and PFPE Coated Films on Aluminium Surface
,”
Tribol. Lett.
,
29
(
3
), pp.
193
199
.
30.
Samad
,
M. A.
,
Satyanarayana
,
N.
, and
Sinha
,
S. K.
,
2010
, “
Tribology of UHMWPE Film on Air-Plasma Treated Tool Steel and the Effect of PFPE Overcoat
,”
Surf. Coat. Technol.
,
204
(
9–10
), pp.
1330
1338
.
31.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
32.
Nemanich
,
R. J.
, and
Solin
,
S. A.
,
1979
, “
First- and Second-Order Raman Scattering From Finite-Size Crystals of Graphite
,”
Phys. Rev. B
,
20
(
2
), pp.
392
401
.
33.
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M.
,
1998
,
Physical Properties of Carbon Nanotubes
,
Imperial College Press
,
London
.
34.
Kip
,
B. J.
,
Eijk
,
M. C. V.
, and
Meier
,
R. J.
,
1991
, “
Molecular Deformation of High- Modulus Polyethylene Fibers Studied by Micro-Raman Spectroscopy
,”
J. Polym. Sci. Part B
,
29
(
1
), pp.
99
108
.
35.
Naylor
,
C. C.
,
Meier
,
R. J.
,
Kip
,
B. J.
,
Williams
,
K. P. J.
,
Mason
,
S. M.
,
Conroy
,
N.
, and
Gerrard
,
D. L.
,
1995
, “
Raman Spectroscopy Employed for the Determination of the Intermediate Phase in Polyethylene
,”
Macromolecules
,
28
(
24
), pp.
2969
2978
.
36.
Wunder
,
S. L.
, and
Merajver
,
S. D.
,
1986
, “
Ultrahigh‐Molecular‐Weight Polyethylene: Raman Spectroscopic Study of Melt Anisotropy
,”
J. Polym. Sci. Part B
,
24
(
1
), pp.
99
110
.
37.
McNallya
,
T.
,
Potschke
,
P.
,
Halley
,
P.
,
Murphy
,
M.
,
Martin
,
D.
,
Bell
,
S. E. J.
,
Brennan
,
G. P.
,
Bein
,
D.
,
Lemoine
,
P.
, and
Quinn
,
J. P.
,
2005
, “
Polyethylene Multiwalled Carbon Nanotube Composites
,”
Polymer
,
46
(
19
), pp.
8222
8232
.
38.
Pesetskii
,
S. S.
,
Bogdanovich
,
S. P.
, and
Myshkin
,
N. K.
,
2013
, “
Tribological Behavior of Polymer Nanocomposites Produced by Dispersion of Nanofillers in Molten Thermoplastic
,”
Tribology of Polymeric Nanocomposites: Friction and Wear of Bulk Materials and Coatings
,
2nd ed.
, Vol.
55
,
K.
Friedrich
and
A. K.
Schlarb
, eds.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
119
162
.
39.
Mimaroglu
,
A.
,
Unal
,
H.
, and
Arda
,
T.
,
2007
, “
Friction and Wear Performance of Pure and Glass Fibre Reinforced Poly-Ether-Imide on Polymer and Steel Counterface Materials
,”
Wear
,
262
(
11–12
), pp.
1407
1413
.
40.
Senthur
,
P. S.
,
Prathiba
,
S.
,
Sharma
,
A.
,
Garg
,
S.
,
Manikandan
,
G.
, and
Sriram
,
C.
,
2014
, “
Investigation on Adhesive Wear Behaviour of Industrial Crystalline and Semi-Crystalline Polymers Against Steel Counterface
,”
Int. J. Chem. Tech. Res.
,
6
(
7
), pp.
3422
3430
.https://www.researchgate.net/publication/286636086
41.
Laux
,
K. A.
,
Jean-Fulcrand
,
A.
,
Sue
,
H. J.
,
Bremner
,
T.
, and
Wong
,
J. S. S.
,
2016
, “
The Influence of Surface Properties on Sliding Contact Temperature and Friction for Polyetheretherketone (PEEK)
,”
Polymer
,
103
, pp.
397
404
.
You do not currently have access to this content.