The varying compliance (VC) vibration directly reflects the oscillation intensity of a rolling bearing, and it can be fully revealed in the VC resonance. Moreover, we define the bearing vibration intensity as the bearing vibration information in this paper. Besides the rolling element number of the bearing, the rotor eccentricity is also an inevitable influencing factor for the VC vibration. This paper focuses on the VC resonance characteristics in a ball bearing rotor system. An analytical model is established, and the vibration responses of the system are calculated in a large speed range with the consideration of different ball numbers and different rotor eccentricities. The theoretical results show that the VC vibration is clearer in low-speed range where the VC resonance exist, while it is suppressed in high-speed range. In general, the intensity of the VC resonance decreases with the increase of ball numbers and is not sensible to the rotor eccentricities in low-speed range. Finally, a ball bearing rotor experiment system is setup, the VC resonance is clearly detected, and the high-quality bearing vibration information is obtained. The experimental results qualitatively agree with the theoretical results.

References

References
1.
Sunnersjö
,
C. S.
,
1978
, “
Varying Compliance Vibrations of Rolling Bearings
,”
J. Sound Vib.
,
58
(
3
), pp.
363
373
.
2.
Fukata
,
S.
,
Gad
,
E. H.
,
Kondou
,
T.
,
Ayabe
,
T.
, and
Tamura
,
H.
,
1984
, “
On the Radial Vibration of Ball Bearings: Computer Simulation
,”
Trans. Jpn. Soc. Mech. Eng. C
,
50
(
457
), pp.
1703
1708
.
3.
Mevel
,
B.
, and
Guyader
,
J. L.
,
1993
, “
Routes to Chaos in Ball Bearings
,”
J. Sound Vib.
,
162
(
3
), pp.
471
487
.
4.
Mevel
,
B.
, and
Guyader
,
J. L.
,
2008
, “
Experiments on Routes to Chaos in Ball Bearings
,”
J. Sound Vib.
,
318
(
3
), pp.
549
564
.
5.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Effect of Radial Internal Clearance of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor
,”
J. Sound Vib.
,
238
(
5
), pp.
723
756
.
6.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings
,”
J. Sound Vib.
,
238
(
5
), pp.
757
779
.
7.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2002
, “
Experimental Study of a Rotor Supported by Deep Groove Ball Bearing
,”
Int. J. Rotating Mach.
,
8
(
4
), pp.
243
258
.
8.
Bai
,
C.-Q.
,
Xu
,
Q.-Y.
, and
Zhang
,
X.-L.
,
2006
, “
Nonlinear Stability of Balanced Rotor Due to Effect of Ball Bearing Internal Clearance
,”
Appl. Math. Mech.
,
27
(
2
), pp.
175
186
.
9.
Ghafari
,
S. H.
,
Abdel-Rahman
,
E. M.
,
Golnaraghi
,
F.
, and
Ismail
,
F.
,
2010
, “
Vibrations of Balanced Fault-Free Ball Bearings
,”
J. Sound Vib.
,
329
(
9
), pp.
1332
1347
.
10.
Zhang
,
Z.
,
Chen
,
Y.
, and
Li
,
Z.
,
2015
, “
Influencing Factors of the Dynamic Hysteresis in Varying Compliance Vibrations of a Ball Bearing
,”
Sci. China Technol. Sci.
,
58
(
5
), pp.
775
782
.
11.
Zhang
,
Z.
,
Chen
,
Y.
, and
Cao
,
Q.
,
2015
, “
Bifurcations and Hysteresis of Varying Compliance Vibrations in the Primary Parametric Resonance for a Ball Bearing
,”
J. Sound Vib.
,
350
, pp.
171
184
.
12.
Jin
,
Y.
,
Yang
,
R.
,
Hou
,
L.
,
Chen
,
Y.
, and
Zhang
,
Z.
,
2017
, “
Experiments and Numerical Results for Varying Compliance Vibrations in a Rigid-Rotor Ball Bearing System
,”
ASME J. Tribol.
,
139
(
4
), p.
041103
.
13.
Villa
,
C.
,
Sinou
,
J. J.
, and
Thouverez
,
F.
,
2008
, “
Stability and Vibration Analysis of a Complex Flexible Rotor Bearing System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
4
), pp.
804
821
.
14.
Gupta
,
T.
,
Gupta
,
K.
, and
Sehgal
,
D.
,
2011
, “
Instability and Chaos of a Flexible Rotor Ball Bearing System: An Investigation on the Influence of Rotating Imbalance and Bearing Clearance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
82501
.
15.
Hou
,
L.
,
Chen
,
Y.
,
Cao
,
Q.
, and
Zhang
,
Z.
,
2015
, “
Turning Maneuver Caused Response in an Aircraft Rotor-Ball Bearing System
,”
Nonlinear Dyn.
,
79
(
1
), pp.
229
240
.
16.
Hou
,
L.
,
Chen
,
Y.
,
Cao
,
Q.
, and
Lu
,
Z.
,
2016
, “
Nonlinear Vibration Analysis of a Cracked Rotor-Ball Bearing System During Flight Maneuvers
,”
Mech. Mach. Theory
,
105
, pp.
515
528
.
17.
Hou
,
L.
,
Chen
,
Y.
,
Fu
,
Y.
,
Chen
,
H.
,
Lu
,
Z.
, and
Liu
,
Z.
,
2017
, “
Application of the HB-AFT Method to the Primary Resonance Analysis of a Dual-Rotor System
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2531
2551
.
18.
Akturk
,
N.
,
Uneeb
,
M.
, and
Gohar
,
R.
,
1997
, “
The Effects of Number of Balls and Preload on Vibrations Associated With Ball Bearings
,”
ASME J. Tribol.
,
119
(
4
), pp.
747
753
.
19.
Aktürk
,
N.
,
1998
, “
The Effect of Ball Size Variation on Vibrations Associated With Ball-Bearings
,”
Proc. Inst. Mech. Eng. Part J
,
212
(
2
), pp.
101
110
.
20.
Akturk
,
N.
,
1999
, “
The Effect of Waviness on Vibrations Associated With Ball Bearings
,”
ASME J. Tribol.
,
121
(
4
), pp.
667
677
.
21.
Akturk
,
N.
,
2003
, “
Some Characteristic Parameters Affecting the Natural Frequency of a Rotating Shaft Supported by Defect-Free Ball Bearings
,”
Proc. Inst. Mech. Eng. Part K
,
217
(
2
), pp.
145
151
.
22.
Jones
,
A. B.
,
1960
, “
A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions
,”
J. Basic Eng.
,
82
(
2
), p.
309
.
23.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Essential Concepts of Bearing Technology
,
CRC Press
, Boca Raton, FL.
24.
Walters
,
C. T.
,
1971
, “
The Dynamics of Ball Bearings
,”
ASME J. Tribol.
,
93
(
1
), pp.
1
10
.
25.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part I: Cylindrical Roller Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
293
302
.
26.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part III: Ball Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
312
318
.
27.
Gupta
,
P. K.
,
1984
,
Advanced Dynamics of Rolling Elements
,
Springer-Verlag
, Berlin.
28.
Liew
,
A.
,
Feng
,
N.
, and
Hahn
,
E. J.
,
2002
, “
Transient Rotordynamic Modeling of Rolling Element Bearing Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), p.
984
.
29.
De mul
,
J. M.
,
Vree
,
J. M.
, and
Maas
,
D. A.
,
1989
, “
Equilibrium and Associated Load Distribution in Ball and Roller-Bearings Loaded in 5-Degrees of Freedom While Neglecting Friction—Part I: General Theory and Application to Ball Bearings
,”
ASME J. Tribol.
,
111
(
1
), pp.
142
148
.
30.
De Mul
,
J. M.
,
Vree
,
J. M.
, and
Maas
,
D. A.
,
1989
, “
Equilibrium and Associated Load Distribution in Ball and Roller-Bearings Loaded in 5-Degrees of Freedom While Neglecting Friction—Part 2: Application to Roller-Bearings and Experimental-Verification
,”
ASME J. Tribol.
,
111
(
1
), pp.
149
155
.
31.
Jang
,
G. H.
, and
Jeong
,
S. W.
,
2002
, “
Nonlinear Excitation Model of Ball Bearing Waviness in a Rigid Rotor Supported by Two or More Ball Bearings Considering Five Degrees of Freedom
,”
ASME J. Tribol.
,
124
(
1
), pp.
82
90
.
32.
Jang
,
G.
, and
Jeong
,
S. W.
,
2004
, “
Vibration Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness
,”
J. Sound Vib.
,
269
(
3–5
), pp.
709
726
.
33.
Jang
,
G. H.
, and
Jeong
,
S. W.
,
2003
, “
Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness
,”
ASME J. Tribol.
,
125
(
1
), pp.
91
101
.
34.
Changqing
,
B.
, and
Qingyu
,
X.
,
2006
, “
Dynamic Model of Ball Bearings With Internal Clearance and Waviness
,”
J. Sound Vib.
,
294
(
1–2
), pp.
23
48
.
35.
Zhang
,
X.
,
Han
,
Q.
,
Peng
,
Z.
, and
Chu
,
F.
,
2013
, “
Stability Analysis of a Rotor-Bearing System With Time-Varying Bearing Stiffness Due to Finite Number of Balls and Unbalanced Force
,”
J. Sound Vib.
,
332
(
25
), pp.
6768
6784
.
36.
Zhang
,
X.
,
Han
,
Q.
,
Peng
,
Z.
, and
Chu
,
F.
,
2016
, “
A Comprehensive Dynamic Model to Investigate the Stability Problems of the Rotor-Bearing System Due to Multiple Excitations
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
1171
1192
.
37.
Wang
,
L.
,
Cui
,
L.
,
Zheng
,
D.
, and
Gu
,
L.
,
2008
, “
Nonlinear Dynamics Behaviors of a Rotor Roller Bearing System With Radial Clearances and Waviness Considered
,”
Chin. J. Aeronaut.
,
21
(
1
), pp.
86
96
.
38.
Babu
,
C. K.
,
Tandon
,
N.
,
Pandey
,
R. K.
,
Xiao
,
H.
,
Brennan
,
M. J. M. J.
,
Shao
,
Y.
, and
Brennan
,
M. J. M. J.
,
2012
, “
Vibration Modeling of a Rigid Rotor Supported on the Lubricated Angular Contact Ball Bearings Considering Six Degrees of Freedom and Waviness on Balls and Races
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011006
.
39.
Babu
,
C. K.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2014
, “
Nonlinear Vibration Analysis of an Elastic Rotor Supported on Angular Contact Ball Bearings Considering Six Degrees of Freedom and Waviness on Balls and Races
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
044503
.
40.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
,
2003
, “
Effects of Preload and Number of Balls on Nonlinear Dynamic Behavior of Ball Bearing System
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
4
(
3
), pp.
265
278
.
41.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
,
2004
, “
Non-Linear Dynamic Behaviors of Rolling Element Bearings Due to Surface Waviness
,”
J. Sound Vib.
,
272
(
3–5
), pp.
557
580
.
42.
Harsha
,
S. P.
, and
Kankar
,
P. K.
,
2004
, “
Stability Analysis of a Rotor Bearing System Due to Surface Waviness and Number of Balls
,”
Int. J. Mech. Sci.
,
46
(
7
), pp.
1057
1081
.
43.
Harsha
,
S. P.
,
2006
, “
Nonlinear Dynamic Analysis of a High-Speed Rotor Supported by Rolling Element Bearings
,”
J. Sound Vib.
,
290
(
1–2
), pp.
65
100
.
44.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep Groove Ball Bearing Including Localized and Distributed Defects—Part 1: Theory
,”
Proc. Inst. Mech. Eng. Part K
,
217
(
3
), pp.
201
211
.
45.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2008
, “
Simulating Gear and Bearing Interactions in the Presence of Faults—Part I: The Combined Gear Bearing Dynamic Model and the Simulation of Localised Bearing Faults
,”
Mech. Syst. Signal Process.
,
22
(
8
), pp.
1924
1951
.
46.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2008
, “
Simulating Gear and Bearing Interactions in the Presence of Faults—Part II: Simulation of the Vibrations Produced by Extended Bearing Faults
,”
Mech. Syst. Signal Process.
,
22
(
8
), pp.
1952
1966
.
47.
Sassi
,
S.
,
Badri
,
B.
, and
Thomas
,
M.
,
2007
, “
A Numerical Model to Predict Damaged Bearing Vibrations
,”
J. Vib. Control
,
13
(
11
), pp.
1603
1628
.
48.
Cao
,
M.
, and
Xiao
,
J.
,
2008
, “
A Comprehensive Dynamic Model of Double-Row Spherical Roller Bearing-Model Development and Case Studies on Surface Defects, Preloads, and Radial Clearance
,”
Mech. Syst. Signal Process.
,
22
(
2
), pp.
467
489
.
49.
Arslan
,
H.
, and
Aktu¨rk
,
N.
,
2008
, “
An Investigation of Rolling Element Vibrations Caused by Local Defects
,”
ASME J. Tribol.
,
130
(
4
), p.
041101
.
50.
Rafsanjani
,
A.
,
Abbasion
,
S.
,
Farshidianfar
,
A.
, and
Moeenfard
,
H.
,
2009
, “
Nonlinear Dynamic Modeling of Surface Defects in Rolling Element Bearing Systems
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1150
1174
.
51.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.
52.
Nakhaeinejad
,
M.
, and
Bryant
,
M. D.
,
2010
, “
Dynamic Modeling of Rolling Element Bearings With Surface Contact Defects Using Bond Graphs
,”
ASME J. Tribol.
,
133
(
1
), p.
011102
.
53.
Patel
,
V. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.
54.
Tadina
,
M.
, and
Boltežar
,
M.
,
2011
, “
Improved Model of a Ball Bearing for the Simulation of Vibration Signals Due to Faults During Run-Up
,”
J. Sound Vib.
,
330
(
17
), pp.
4287
4301
.
55.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2012
, “
Vibration Based Performance Prediction of Ball Bearings Caused by Localized Defects
,”
Nonlinear Dyn.
,
69
(
3
), pp.
847
875
.
56.
Pandya
,
D. H.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2013
, “
Nonlinear Dynamic Analysis of High Speed Bearings Due to Combined Localized Defects
,”
J. Vib. Control
,
20
(
15
), pp.
2300
2313
.
57.
Bogdevičius
,
M.
, and
Skrickij
,
V.
,
2013
, “
Investigation of Dynamic Processes in Ball Bearings With Defects
,”
Solid State Phenom.
,
198
, pp.
651
656
.
58.
Wang
,
F.
,
Jing
,
M.
,
Yi
,
J.
, and
Dong
,
G.
,
2014
, “
Dynamic Modelling for Vibration Analysis of a Cylindrical Roller Bearing Due to Localized Defects on Raceways
,”
J. Multi-Body Dyn.
,
229
(
1
), pp.
39
64
.
59.
Liu
,
J.
,
Shao
,
Y.
, and
Lim
,
T. C.
,
2012
, “
Vibration Analysis of Ball Bearings With a Localized Defect Applying Piecewise Response Function
,”
Mech. Mach. Theory
,
56
, pp.
156
169
.
60.
Liu
,
J.
, and
Shao
,
Y.
,
2015
, “
A New Dynamic Model for Vibration Analysis of a Ball Bearing Due to a Localized Surface Defect Considering Edge Topographies
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1329
1351
.
61.
Liu
,
J.
,
Shao
,
Y.
, and
Zhu
,
W. D.
,
2015
, “
A New Model for the Relationship Between Vibration Characteristics Caused by the Time-Varying Contact Stiffness of a Deep Groove Ball Bearing and Defect Sizes
,”
ASME J. Tribol.
,
137
(
3
), p.
31101
.
62.
Liu
,
J.
, and
Shao
,
Y.
,
2017
, “
Dynamic Modeling for Rigid Rotor Bearing Systems With a Localized Defect Considering Additional Deformations at the Sharp Edges
,”
J. Sound Vib.
,
398
, pp.
84
102
.
63.
Moazen Ahmadi
,
A.
,
Petersen
,
D.
, and
Howard
,
C.
,
2015
, “
A Nonlinear Dynamic Vibration Model of Defective Bearings—The Importance of Modelling the Finite Size of Rolling Elements
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
309
326
.
64.
Petersen
,
D.
,
Howard
,
C.
,
Sawalhi
,
N.
,
Moazen Ahmadi
,
A.
, and
Singh
,
S.
,
2015
, “
Analysis of Bearing Stiffness Variations, Contact Forces and Vibrations in Radially Loaded Double Row Rolling Element Bearings With Raceway Defects
,”
Mech. Syst. Signal Process.
,
50–51
, pp.
139
160
.
65.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2014
, “
Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings With Localized Surface Defects in Raceways
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041015
.
66.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2015
, “
A Systematic Study of Ball Passing Frequencies Based on Dynamic Modeling of Rolling Ball Bearings With Localized Surface Defects
,”
J. Sound Vib.
,
357
, pp.
207
232
.
67.
Yamamoto
,
T.
, and
Ishida
,
Y.
,
1974
, “
The Particular Vibration Phenomena Due to Ball Bearings at the Major Critical Speed
,”
Bull. JSME
,
17
(
103
), pp.
59
67
.
68.
Yamamoto
,
T.
,
Ishida
,
Y.
, and
Kawasumi
,
J.
,
1977
, “
The Particular Vibration Phenomena Due to Ball Bearings at the Mayor Critical Speed (2nd Report, on the Effects of Symmetrical Nonlinear Spring Characteristics)
,”
Bull. JSME
,
20
(
139
), pp.
33
39
.
69.
Yamamoto
,
T.
,
Ishida
,
Y.
,
Ikeda
,
T.
, and
Yamada
,
M.
,
1981
, “
Subharmonic and Summed-and-Differential Harmonic Oscillations in an Unsymmetrical Rotor
,”
Bull. JSME
,
24
(
187
), pp.
192
199
.
70.
Bai
,
C.
,
Zhang
,
H.
, and
Xu
,
Q.
,
2013
, “
Subharmonic Resonance of a Symmetric Ball Bearing-Rotor System
,”
Int. J. Non-Linear Mech
,
50
, pp.
1
10
.
71.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Vibration Monitoring of Rolling Element Bearings by the High-Frequency Resonance Technique—A Review
,”
Tribol. Int.
,
17
(
1
), pp.
3
10
.
72.
Tandon
,
N.
, and
Nakra
,
B. C.
,
1992
, “
Vibration and Acoustic Monitoring Techniques for the Detection of Defects in Rolling Element Bearings—A Review
,”
Shock Vib. Dig.
,
24
(
3
), pp.
3
11
.
73.
Tandon
,
N.
, and
Choudhury
,
A.
,
1999
, “
A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
,
32
(
8
), pp.
469
480
.
74.
Peng
,
Z. K.
, and
Chu
,
F. L.
,
2004
, “
Application of the Wavelet Transform in Machine Condition Monitoring and Fault Diagnostics: A Review With Bibliography
,”
Mech. Syst. Signal Process.
,
18
(
2
), pp.
199
221
.
75.
Randall
,
R. B.
, and
Antoni
,
J.
,
2011
, “
Rolling Element Bearing Diagnostics-a Tutorial
,”
Mech. Syst. Signal Process.
,
25
(
2
), pp.
485
520
.
76.
Feng
,
Z.
,
Liang
,
M.
, and
Chu
,
F.
,
2013
, “
Recent Advances in Time-Frequency Analysis Methods for Machinery Fault Diagnosis: A Review With Application Examples
,”
Mech. Syst. Signal Process.
,
38
(
1
), pp.
165
205
.
77.
Sun
,
H.
,
He
,
Z.
,
Zi
,
Y.
,
Yuan
,
J.
,
Wang
,
X.
,
Chen
,
J.
, and
He
,
S.
,
2014
, “
Multiwavelet Transform and Its Applications in Mechanical Fault Diagnosis—A Review
,”
Mech. Syst. Signal Process.
,
43
(
1–2
), pp.
1
24
.
78.
Yan
,
R.
,
Gao
,
R. X.
, and
Chen
,
X.
,
2014
, “
Wavelets for Fault Diagnosis of Rotary Machines: A Review With Applications
,”
Signal Process.
,
96
(
Pt. A
), pp.
1
15
.
79.
El-Thalji
,
I.
, and
Jantunen
,
E.
,
2015
, “
A Summary of Fault Modelling and Predictive Health Monitoring of Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
252
272
.
80.
Abboud
,
D.
,
Antoni
,
J.
,
Sieg-Zieba
,
S.
, and
Eltabach
,
M.
,
2017
, “
Envelope Analysis of Rotating Machine Vibrations in Variable Speed Conditions: A Comprehensive Treatment
,”
Mech. Syst. Signal Process.
,
84
, pp.
200
226
.
81.
Feng
,
N. S.
,
Hahn
,
E. J.
, and
Randall
,
R. B.
,
2002
, “
Using Transient Analysis Software to Simulate Vibration Signals Due to Rolling Element Bearing Defects
,”
Third Australian Congress on Applied Mechanics
, Sydney, Australia, Feb. 20–22, pp.
689
694
.
82.
Cui
,
L.
,
Zhang
,
Y.
,
Zhang
,
F.
,
Zhang
,
J.
, and
Lee
,
S.
,
2016
, “
Vibration Response Mechanism of Faulty Outer Race Rolling Element Bearings for Quantitative Analysis
,”
J. Sound Vib.
,
364
, pp.
67
76
.
83.
Randall
,
R. B.
,
1987
,
Frequency Analysis
,
Brüel & Kjær
,
Nærum, Denmark
.
84.
Chen
,
Y. S.
,
2002
,
Nonlinear Dynamics
,
Higher Education Press
,
Beijing, China
.
85.
Rigaud
,
E.
, and
Perret-Liaudet
,
J.
,
2003
, “
Experiments and Numerical Results on Non-Linear Vibrations of an Impacting Hertzian Contact—Part 1: Harmonic Excitation
,”
J. Sound Vib.
,
265
(
2
), pp.
289
307
.
86.
Sinou
,
J. J.
,
2009
, “
Non-Linear Dynamics and Contacts of an Unbalanced Flexible Rotor Supported on Ball Bearings
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1713
1732
.
You do not currently have access to this content.