The nonprotective tribolayers of the titanium alloy were modified into additives-containing tribolayers through an artificial addition of multilayer graphene (MLG), Fe2O3 nanomaterials, or their mixtures with various proportions on the titanium alloy/steel sliding interface. The sustainability of the modified tribolayers under a high load was evaluated by the critical sliding distance for a mild-to-severe wear transition. The modified tribolayers were found to significantly improve or deteriorate tribological performance of the titanium alloy, which was decided by their ingredients. The pure MLG- or Fe2O3-containing tribolayers, because of their lacking load-bearing or lubricant capacity, presented poor sustainability and readily lost protection to cause high wear loss or frictional coefficient. However, for the addition of various mixtures of MLG and Fe2O3, the modified tribolayers possessed a double-layer structure consisting of friction-reducing MLG- and wear-resistant Fe2O3-predominated layers. They presented a sustainable protection, thus remarkably improving the tribological performance of the titanium alloy.

References

References
1.
An
,
Q. L.
,
Fu
,
Y. C.
, and
Xu
,
J. H.
,
2011
, “
Experimental Study on Turning of TC9 Titanium Alloy With Cold Water Mist Jet Cooling
,”
Int. J. Mach. Tool. Manuf.
,
51
(
6
), pp.
549
555
.
2.
Leyens
,
C.
, and
Peters
,
M.
,
2003
,
Titanium and Titanium Alloys: Fundamentals and Applications
,
Wiley VCH
,
Weinheim, Germany
.
3.
Lebedeva
,
I. L.
, and
Presnyakova
,
G. N.
,
1991
, “
Adhesion Wear Mechanisms Under Dry Friction of Titanium Alloys in Vacuum
,”
Wear
,
148
(
2
), pp.
203
210
.
4.
Budinski
,
K. G.
,
1991
, “
Tribological Properties of Titanium Alloys
,”
Wear
,
151
(
2
), pp.
203
217
.
5.
Eyre
,
T. S.
, and
Alsahin
,
H.
,
1977
,
Proceedings of the International Conference on Wear of Materials
, American Society of Mechanical Engineers, New York, pp. 344–350.
6.
Molinari
,
A.
,
Straffelini
,
G.
,
Tesi
,
B.
, and
Bacci
,
T.
,
1997
, “
Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy
,”
Wear
,
208
(
1–2
), pp.
105
112
.
7.
Qu
,
J.
,
Blau
,
P. J.
,
Watkins
,
T. R.
,
Cavin
,
O. B.
, and
Nagraj
,
S. K.
,
2005
, “
Friction and Wear of Titanium Alloys Sliding Against Metal, Polymer, and Ceramic Counterfaces
,”
Wear
,
258
(
9
), pp.
1348
1356
.
8.
Alam
,
M. O.
, and
Haseeb
,
A.
,
2002
, “
Response of Ti-6Al-4V and Ti-24Al-11Nb Alloys to Dry Sliding Wear Against Hardened Steel
,”
Tribol. Int.
,
35
(
6
), pp.
357
362
.
9.
Straffelini
,
G.
, and
Molinari
,
A.
,
1999
, “
Dry Sliding Wear of Ti-6Al-4V Alloy as Influenced by the Counterface and Sliding Conditions
,”
Wear
,
236
(
1–2
), pp.
328
338
.
10.
Qiu
,
M.
,
Zhang
,
Y. Z.
,
Zhu
,
J.
, and
Yang
,
J. H.
,
2006
, “
Correlation Between the Characteristics of the Thermo-Mechanical Mixed Layer and Wear Behavior of Ti-6Al-4V Alloy
,”
Tribol. Lett.
,
22
(3), pp.
227
231
.
11.
Qiu
,
M.
,
Zhang
,
Y. Z.
,
Yang
,
J. H.
, and
Zhu
,
J.
,
2006
, “
Microstructure and Tribological Characteristics of Ti-6Al-4V Alloy Against GCr15 Under High Speed and Dry Sliding
,”
Mater. Sci. Eng.
,
434
(
1–2
), pp.
71
75
.
12.
Straffelini
,
G.
, and
Molinari
,
A.
,
2011
, “
Mild Sliding Wear of Fe-0.2%C, Ti-6%Al-4%V, and Al-7072: A Comparative Study
,”
Tribol. Lett.
,
41
(
1
), pp.
227
238
.
13.
Wang
,
L.
,
Zhang
,
Q. Y.
,
Li
,
X. X.
,
Cui
,
X. H.
, and
Wang
,
S. Q.
,
2014
, “
Severe-to-Mild Wear Transition of Titanium Alloys as a Function of Temperature
,”
Tribol. Lett.
,
53
(
3
), pp.
511
520
.
14.
Wang
,
L.
,
Zhang
,
Q. Y.
,
Li
,
X. X.
,
Cui
,
X. H.
, and
Wang
,
S. Q.
,
2014
, “
Dry Sliding Wear Behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3 Si Alloy
,”
Metall. Mater. Trans.
,
45
(4), pp.
2284
2296
.
15.
Li
,
X. X.
,
Zhang
,
Q. Y.
,
Zhou
,
Y.
,
Liu
,
J. Q.
,
Chen
,
K. M.
, and
Wang
,
S. Q.
,
2016
, “
Mild and Severe Wear of Titanium Alloys
,”
Tribol. Lett.
,
61
(2), p. 14.
16.
Kotov
,
N. A.
,
2006
, “
Materials Science: Carbon Sheet Solutions
,”
Nature
,
442
(
7100
), pp.
254
255
.
17.
Choi
,
W.
,
Lahiri
,
I.
,
Seelaboyina
,
R.
, and
Kang
,
Y. S.
,
2010
, “
Synthesis of Graphene and Its Applications: A Review
,”
Crit. Rev. Solid State
,
35
(
1
), pp.
52
71
.
18.
Zhai
,
W. Z.
,
Shi
,
X. L.
,
Yao
,
J.
,
Ibrahim
,
A. M. M.
,
Xu
,
Z. S.
,
Zhu
,
Q. S.
,
Xiao
,
Y. C.
,
Chen
,
L.
, and
Zhang
,
Q. X.
,
2015
, “
Investigation of Mechanical and Tribological Behaviors of Multilayer Graphene Reinforced Ni3Al Matrix Composites
,”
Compos. Part. B
,
70
, pp.
149
155
.
19.
Xu
,
Z. S.
,
Shi
,
X. L.
,
Zhai
,
W. Z.
,
Yao
,
J.
,
Song
,
S. Y.
, and
Zhang
,
Q. X.
,
2014
, “
Preparation and Tribological Properties of TiAl Matrix Composites Reinforced by Multilayer Graphene
,”
Carbon
,
67
, pp.
168
177
.
20.
Tabandeh-Khorshid
,
M.
,
Omrani
,
E.
,
Menezes
,
P. L.
, and
Rohatgi
,
P. K.
,
2016
, “
Tribological Performance of Self-Lubricating Aluminum Matrix Nanocomposites: Role of Graphene Nanoplatelets
,”
Eng. Sci. Technol. Int. J.
,
19
(
1
), pp.
463
469
.
21.
Llorente
,
J.
,
Román-Manso
,
B.
,
Miranzo
,
P.
, and
Belmonte
,
M.
,
2016
, “
Tribological Performance Under Dry Sliding Conditions of Graphene/Silicon Carbide Composites
,”
J. Eur. Ceram. Soc.
,
36
(
3
), pp.
429
435
.
22.
Xian
,
G.
,
Walter
,
R.
, and
Haupert
,
F.
,
2006
, “
A Synergistic Effect of Nano-TiO2 and Graphite on the Tribological Performance of Epoxy Matrix Composites
,”
J. Appl. Polym. Sci.
,
102
(
3
), pp.
2391
2400
.
23.
Jacobs
,
O.
,
Jaskulka
,
R.
,
Yan
,
C.
, and
Wu
,
W.
,
2005
, “
On the Effect of Counterface Material and Aqueous Environment on the Sliding Wear of Various PEEK Compounds
,”
Tribol. Lett.
,
18
(
3
), pp.
359
372
.
24.
Jacobs
,
O.
,
Jaskulka
,
R.
,
Yan
,
C.
, and
Wu
,
W.
,
2005
, “
On the Effect of Counterface Material and Aqueous Environment on the Sliding Wear of Carbon Fibre Reinforced Polyetheretherketone (PEEK)
,”
Tribol. Lett.
,
19
(4), pp.
319
329
.
25.
Ludema
,
K. C.
,
1992
, “
Third Bodies in Wear Models
,”
Wear Particles: From the Cradle to the Grave
,
D.
Dowson
,
C. M.
Taylor
,
T. H. C.
Childs
,
M.
Godet
, and
G.
Dalmaz
, eds.,
Elsevier Science Publishers B.V
,
Amsterdam, The Netherlands
, pp.
155
160
.
26.
Ferrari
,
A. C.
,
Meyer
,
J. C.
,
Scardaci
,
V.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
,
Mauri
,
F.
,
Piscanec
,
S.
,
Jiang
,
D.
,
Novoselov
,
K. S.
,
Roth
,
S.
, and
Geim
,
A. K.
,
2006
, “
Raman Spectrum of Graphene and Graphene Layers
,”
Phys. Rev. Lett.
,
97
(
18
), pp.
13831
13840
.
27.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(5696), pp.
666
669
.
28.
Stott
,
F. H.
, and
Jordan
,
M. P.
,
2001
, “
The Effects of Load and Substrate Hardness on the Development and Maintenance of Wear-Protective Layers During Sliding at Elevated Temperatures
,”
Wear
,
250
(
1–12
), pp.
391
400
.
29.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
30.
Qiao
,
Y. L.
,
Zhao
,
H. C.
,
Zang
,
Y.
, and
Zhang
,
Q.
,
2004
, “
Friction and Wear Properties of Water-Dispersing System of Multilayer Graphene
,”
Tribol.
,
34
(5), pp.
523
530
.
31.
Guiderdoni
,
C.
,
Pavlenko
,
E.
,
Turq
,
V.
,
Weibel
,
A.
,
Puech
,
P.
,
Estournès
,
C.
,
Peigney
,
A.
,
Bacsa
,
W.
, and
Laurent
,
C.
,
2013
, “
The Preparation of Carbon Nanotube (CNT)/Copper Composites and the Effect of the Number of CNT Walls on Their Hardness, Friction and Wear Properties
,”
Carbon
,
58
, pp.
185
197
.
32.
Porwal
,
H.
,
Tatarko
,
P.
,
Saggar
,
R.
,
Grasso
,
S.
,
Mani
,
M. K.
,
Dlouhý
,
I.
,
Dusza
,
J.
, and
Reece
,
M. J.
,
2014
, “
Tribological Properties of Silica–Graphene Nano-Platelet Composites
,”
Ceram. Int.
,
40
(
8
), pp.
12067
12074
.
33.
Kato
,
H.
, and
Komai
,
K.
,
2007
, “
Tribofilm Formation and Mild Wear by Tribo-Sintering of Nanometer-Sized Oxide Particles on Rubbing Steel Surfaces
,”
Wear
,
262
(
1–2
), pp.
36
41
.
34.
Zhang
,
Q. Y.
,
Zhou
,
Y.
,
Li
,
X. X.
,
Wang
,
L.
,
Cui
,
X. H.
, and
Wang
,
S. Q.
,
2016
, “
Accelerated Formation of Tribo-Oxide Layer and Its Effect on Sliding Wear of a Titanium Alloy
,”
Tribol. Lett.
,
63
(1), p. 2.
35.
Feng
,
X.
,
Kwon
,
S.
,
Park
,
J. Y.
, and
Salmeron
,
M.
,
2013
, “
Superlubric Sliding of Graphene Nanoflakes on Graphene
,”
ACS Nano
,
7
(
2
), pp.
1718
1724
.
You do not currently have access to this content.