The high-temperature gas-cooled reactor pebble-bed modular (HTR-PM) has been proposed by the Institute of Nuclear and New Energy Technology of Tsinghua University, in which the active magnetic bearings (AMBs) are equipped to support the high-speed rotor in the helium circulator system. In the case of AMB failures, emergencies, or overload conditions, the auxiliary bearing is applied as the backup protector to provide temporary mechanical support and displacement constraint for the dropping rotor. A detailed dynamic model is established to reveal the behavior of the dropping rotor. This model is able to describe the rotor displacement and inclination around each axis. The left and right rotor orbits are revealed. Dropping experiments are also carried out to reveal the actual behavior of the dropping rotor in helium. The predicted and experimental results will benefit further study, design, and application of the auxiliary bearing in HTR-PM helium circulator.

References

1.
Xu
,
Y.
, and
Zuo
,
K.
,
2002
, “
Overview of the 10 MW High Temperature Gas Cooled Reactor-Test Module Project
,”
Nucl. Eng. Des.
,
218
(
1–3
), pp.
13
23
.
2.
Schweitzer
,
G.
,
1994
,
Active Magnetic Bearings
,
VDF Hochschulverlag AG an der ETH Zurich
,
Zurich, Switzerland
.
3.
Yang
,
G.
,
Shi
,
Z.
,
Zhao
,
J.
, and
Yu
,
S.
,
2013
, “
Reliability Analysis of Helium Blower Auxiliary Bearings for HTR-10
,” International Conference on Structural Mechanics in Reactor Technology (
SMiRT-22
), San Francisco, CA, Aug. 18–23.
4.
Sun
,
G.
,
Palazzolo
,
A. B.
,
Provenza
,
A.
, and
Montague
,
G.
,
2004
, “
Detailed Ball Bearing Model for Magnetic Suspension Auxiliary Service
,”
J. Sound Vib.
,
269
(
3–5
), pp.
933
963
.
5.
Sun
,
G.
,
2006
, “
Rotor Drop and Following Thermal Growth Simulations Using Detailed Auxiliary Bearing and Damper Models
,”
J. Sound Vib.
,
289
(
1–2
), pp.
334
359
.
6.
Lee
,
J. G.
, and
Palazzolo
,
A. B.
,
2012
, “
Catcher Bearing Life Prediction Using a Rainflow Counting Approach
,”
ASME J. Tribol.
,
134
(
3
), p.
031101
.
7.
Wilkes
,
J.
,
Moore
,
J.
,
Ransom
,
D.
, and
Vannini
,
G.
,
2013
, “
An Improved Catcher Bearing Model and an Explanation of the Forward Whirl/Whip Phenomenon Observed in Active Magnetic Bearing Transient Drop Experiments
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
042504
.
8.
Keogh
,
P. S.
, and
Yong
,
W. Y.
,
2007
, “
Thermal Assessment of Dynamic Rotor/Auxiliary Bearing Contact Events
,”
ASME J. Tribol.
,
129
(
1
), pp.
143
152
.
9.
Fumagalli
,
M.
, and
Schweitaer
,
G.
,
1996
, “
Measurements on a Rotor Contacting Its Housing
,”
Sixth International Conference on Vibration in Rotating Machinery, IMechE Conference Transactions
, Oxford, UK, Sept. 9–12, pp.
779
788
.
10.
Ishii
,
T.
, and
Kirk
,
R. G.
,
1996
, “
Transient Response Technique Applied to Active Magnetic Bearing Machinery During Rotor Drop
,”
ASME J. Vib. Acoust.
,
118
(
2
), pp.
154
163
.
11.
Zeng
,
S.
,
2003
, “
Modeling and Experimental Study of the Transient Response of an Active Magnetic Bearing Rotor During Rotor Drop on Back-Up Bearings
,”
J. Syst. Control Eng.
,
217
(
6
), pp.
505
517
.
12.
Keogh
,
P.
, and
Cole
,
M.
,
2003
, “
Rotor Vibration With Auxiliary Bearing Contact in Magnetic Bearing Systems Part 1: Synchronous Dynamics
,”
Proc. Inst. Mech. Eng. C
,
217
(
4
), pp.
377
392
.
13.
Cole
,
M.
, and
Keogh
,
P.
,
2003
, “
Rotor Vibration With Auxiliary Bearing Contact in Magnetic Bearing Systems—Part 2: Robust Synchronous Control for Rotor Position Recovery
,”
Proc. Inst. Mech. Eng. C
,
217
(
4
), pp.
393
409
.
14.
Abulrub
,
A. H. G.
,
Sahinkaya
,
M. N.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
,
2006
, “
Experiments on ROLAC to Recover Rotor Position Following Contact
,”
Tenth International Symposium on Magnetic Bearings
(
ISMB10
), Martigny, Switzerland, Sept. 21–23.
15.
Schlotter
,
M.
, and
Keogh
,
P. S.
,
2007
, “
Synchronous Position Recovery Control for Flexible Rotors in Contact With Auxiliary Bearings
,”
ASME J. Vib. Acoust.
,
129
(
5
), pp.
550
558
.
16.
Xiao
,
Z.
,
Yang
,
G.
,
Li
,
Y.
,
Shi
,
Z.
, and
Yu
,
S.
,
2014
, “
Performance Assessment of Auxiliary Bearing in HTR-10 AMB Helium Circulator on the Event of Rotor Drop
,”
Nucl. Power Eng.
,
35
(1), pp.
82
85
.
17.
Kang
,
X.
,
Yang
,
G.
, and
Yu
,
S.
,
2014
, “
Dynamic Behavior of the AMB's Vertical Arranged Rotor During Its Drop Process
,”
ASME
Paper No. ICONE22-30062.
18.
Zhao
,
Y.
,
Yang
,
G.
,
Shi
,
Z.
, and
Zhao
,
L.
,
2015
, “
Thermal Analysis and Simulation of Auxiliary Bearings and Its Application in the High Temperature Reactor-10
,”
ASME J. Tribol.
,
138
(
1
), p.
011102
.
19.
Zhao
,
Y.
,
Yang
,
G.
,
Keogh
,
P. S.
, and
Zhao
,
L.
,
2016
, “
Dynamic Analysis for the Rotor Drop Process and Its Application to a Vertically Levitated Rotor/AMB System
,”
ASME J. Tribol.
,
139
(4), p. 041701.
20.
Zhao
,
Y.
,
Yang
,
G.
,
Liu
,
X.
,
Shi
,
Z.
, and
Zhao
,
L.
,
2016
, “
Research on Dynamics and Experiments About Auxiliary Bearings for the Helium Circulator of the 10 MW High Temperature Gas-Cooled Reactor
,”
Ann. Nucl. Energy
,
95
, pp.
176
187
.
21.
Harris
,
T. A.
,
1991
,
Rolling Bearing Analysis
,
Wiley
,
New York
.
You do not currently have access to this content.