Spiral groove is one of the most common types of structures on gas mechanical seals. Numerical research demonstrated that the grooves designed for improving gas film lift or film stiffness often lead to the leakage increase. Hence, a multi-objective optimization approach specially for conflicting objectives is utilized to optimize the spiral grooves for a specific sample in this study. First, the objectives and independent variables in multi-objective optimization are determined by single objective analysis. Then, a set of optimal parameters, i.e., Pareto-optimal set, is obtained. Each solution in this set can get the highest dimensionless gas film lift under a specific requirement of the dimensionless leakage rate. Finally, the collinearity diagnostics is performed to evaluate the importance of different independent variables in the optimization.

References

References
1.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Halperin
,
G.
,
1999
, “
Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces
,”
Tribol. Trans.
,
42
(
3
), pp.
511
516
.
2.
Yu
,
H.
,
Deng
,
H.
,
Huang
,
W.
, and
Wang
,
X.
,
2011
, “
The Effect of Dimple Shapes on Friction of Parallel Surfaces
,”
Proc. Inst. Mech. Eng., Part J
,
225
(
8
), pp.
693
703
.
3.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2013
, “
Effect of Dimple's Internal Structure on Hydrodynamic Lubrication
,”
Tribol. Lett.
,
52
(
3
), pp.
415
430
.
4.
Ma
,
C.
,
Bai
,
S.
,
Peng
,
X.
, and
Meng
,
Y.
,
2013
, “
Improving Hydrophobicity of Laser Textured Sic Surface With Micro-Square Convexes
,”
Appl. Surf. Sci.
,
266
, pp.
51
56
.
5.
Yu
,
H.
,
Huang
,
W.
, and
Wang
,
X.
,
2013
, “
Dimple Patterns Design for Different Circumstances
,”
Lubr. Sci.
,
25
(
2
), pp.
67
78
.
6.
Zhang
,
B.
,
Huang
,
W.
,
Wang
,
J.
, and
Wang
,
X.
,
2013
, “
Comparison of the Effects of Surface Texture on the Surfaces of Steel and UHMWPE
,”
Tribol. Int.
,
65
, pp.
138
145
.
7.
Wang
,
X.
,
Adachi
,
K.
,
Otsuka
,
K.
, and
Kato
,
K.
,
2006
, “
Optimization of the Surface Texture for Silicon Carbide Sliding in Water
,”
Appl. Surf. Sci.
,
253
(
3
), pp.
1282
1286
.
8.
Wang
,
T.
,
Huang
,
W.
,
Liu
,
X.
,
Li
,
Y.
, and
Wang
,
Y.
,
2014
, “
Experimental Study of Two-Phase Mechanical Face Seals With Laser Surface Texturing
,”
Tribol. Int.
,
72
, pp.
90
97
.
9.
Feldman
,
Y.
,
Kligerman
,
Y.
,
Etsion
,
I.
, and
Haber
,
S.
,
2005
, “
The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces
,”
ASME J. Tribol.
,
128
(
2
), pp.
345
350
.
10.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2011
, “
Performance Analysis of Full-Film Textured Surfaces With Consideration of Roughness Effects
,”
ASME J. Tribol.
,
133
(
2
), p.
021704
.
11.
So
,
H.
, and
Chen
,
C.
,
2004
, “
Effects of Micro-Wedges Formed Between Parallel Surfaces on Mixed Lubrication—Part I: Experimental Evidence
,”
Tribol. Lett.
,
17
(
3
), pp.
513
520
.
12.
Lee
,
S. C.
, and
Zheng
,
X.
,
2013
, “
Analyses of Both Steady Behavior and Dynamic Tracking of Non-Contacting Spiral-Grooved Gas Face Seals
,”
Comput. Fluids
,
88
, pp.
326
333
.
13.
Wan
,
Y.
, and
Xiong
,
D.
,
2008
, “
The Effect of Laser Surface Texturing on Frictional Performance of Face Seal
,”
J. Mater. Process. Technol.
,
197
(
1–3
), pp.
96
100
.
14.
Mcnickle
,
A. D.
, and
Etsion
,
I.
,
2004
, “
Near-Contact Laser Surface Textured Dry Gas Seals
,”
ASME J. Tribol.
,
126
(
4
), pp.
788
794
.
15.
Shi
,
L.
,
Wang
,
X.
,
Su
,
X.
,
Huang
,
W.
, and
Wang
,
X.
,
2015
, “
Comparison of the Load-Carrying Performance of Mechanical Gas Seals Textured With Microgrooves and Microdimples
,”
ASME J. Tribol.
,
138
(
2
), p.
021701
.
16.
Razzaque
,
M. M.
, and
Faisal
,
M. T. R.
,
2007
, “
Performance of Mechanical Face Seals With Surface Micropores
,”
J. Mech. Eng.
,
37
, pp.
77
80
.
17.
Salant
,
R. F.
, and
Homiller
,
S. J.
,
1992
, “
The Effects of Shallow Groove Patterns on Mechanical Seal Leakage
,”
Tribol. Trans.
,
35
(
1
), pp.
142
148
.
18.
Xiao
,
K.
,
Huang
,
W.
,
Gao
,
W.
,
Liu
,
X.
, and
Wang
,
Y.
,
2016
, “
A Semi-Analytical Model of Spiral-Groove Face Seals: Correction and Extension
,”
Tribol. Trans.
,
59
(
6
), pp.
971
982
.
19.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2012
, “
Thermohydrodynamic Analysis of Spiral Groove Mechanical Face Seal for Liquid Applications
,”
ASME J. Tribol.
,
134
(
2
), p.
021703
.
20.
Wang
,
B.
, and
Zhang
,
H.
,
2011
, “
Numerical Analysis of a Spiral-Groove Dry-Gas Seal Considering Micro-Scale Effects
,”
Chin. J. Mech. Eng.
,
24
(
1
), pp.
146
153
.
21.
Faria
,
M. T. C.
,
2001
, “
An Efficient Finite Element Procedure for Analysis of High-Speed Spiral Groove Gas Face Seals
,”
ASME J. Tribol.
,
123
(1), pp.
205
210
.
22.
Zirkelback
,
N.
,
2000
, “
Parametric Study of Spiral Groove Gas Face Seals
,”
Tribol. Trans.
,
43
(
2
), pp.
337
343
.
23.
Zhou
,
J.
,
Gu
,
B.
, and
Chen
,
Y.
,
2007
, “
An Improved Design of Spiral Groove Mechanical Seal
,”
Chin. J. Chem. Eng.
,
15
(
4
), pp.
499
506
.
24.
Liu
,
Z.
,
Liu
,
Y.
, and
Liu
,
X.
,
2007
, “
Optimization Design of Main Parameters for Double Spiral Grooves Face Seal
,”
Sci. China Ser. E
,
50
(
4
), pp.
448
453
.
25.
Zirkelback
,
N.
, and
Andre´s
,
L. S.
,
1999
, “
Effect of Frequency Excitation on Force Coefficients of Spiral Groove Gas Seals
,”
ASME J. Tribol.
,
121
(
4
), pp.
853
861
.
26.
Li
,
H.
, and
Zhang
,
Q.
,
2009
, “
Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II
,”
IEEE Trans. Evol. Comput.
,
13
(
2
), pp.
284
302
.
27.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.