Greenwood and Tripp (GT model) have proposed that the contact analysis of two rough surfaces (two-rough-surface contact model) could be considered as an equivalent rough surface in contact with a rigid flat (single-rough-surface contact model). In this paper, by virtue of finite element method, the normal contact analysis was performed with two-rough-surface contact model and its equivalent single-rough-surface contact model, and it was verified that the resultant normal contact forces are in good agreement with each other for these two models, meanwhile the equivalent stress is a little bit lower for two-rough-surface model due to shoulder-to-shoulder contact. In contrast, the sliding contact analysis was also performed with these two models, respectively, and the results show a great disparity with each other in all contact parameters due to the strong plowing effects in two-rough-surface model. Therefore, this equivalence approach proposed by Greenwood and Tripp is only valid for normal contact of rough surfaces and not valid for sliding contact.

References

References
1.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
2.
Bahi
,
S.
,
Nouari
,
M.
,
Moufki
,
A.
,
El Mansori
,
M.
, and
Molinari
,
A.
,
2011
, “
A New Friction Law for Sticking and Sliding Contacts in Machining
,”
Tribol. Int.
,
44
(
7–8
), pp.
764
771
.
3.
Bottiglione
,
F.
,
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
,
2009
, “
Leakage Mechanism in Flat Seals
,”
J. Appl. Phys.
,
106
(
10
), p.
104902
.
4.
Hu
,
Z.
,
Lu
,
W.
,
Thouless
,
M. D.
, and
Barber
,
J. R.
,
2016
, “
Effect of Plastic Deformation on the Evolution of Wear and Local Stress Fields in Fretting
,”
Int. J. Solids Struct.
,
82
, pp.
1
8
.
5.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
6.
Lu
,
W.
,
Thouless
,
M. D.
,
Hu
,
Z.
,
Wang
,
H.
,
Ghelichi
,
R.
,
Wu
,
C. H.
,
Kamrin
,
K.
, and
Parks
,
D.
,
2016
, “
CASL Structural Mechanics Modeling of Grid-to-Rod Fretting (GTRF)
,”
JOM
,
68
(
11
), pp.
2922
2929
.
7.
Bowden
,
F. P.
,
Moore
,
A. J. W.
, and
Tabor
,
D.
,
1943
, “
The Ploughing and Adhesion of Sliding Metals
,”
J. Appl. Phys.
,
14
(
2
), pp.
80
91
.
8.
Hertz
,
H.
,
1882
, “
Uber Die Beruhrung Fester Elastischer Kurper
,”
J. Reine Angew. Math.
,
1882
(92), pp.
156
171
.
9.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
295
(
1442
), pp.
300
319
.
10.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
153
159
.
11.
Hisakado
,
T.
,
1974
, “
Effect of Surface Roughness on Contact Between Solid Surfaces
,”
Wear
,
28
(
2
), pp.
217
234
.
12.
McCool
,
J. I.
,
1986
, “
Predicting Microfracture in Ceramics Via a Microcontact Model
,”
ASME J. Tribol.
,
108
(
3
), pp.
380
386
.
13.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
634
.
14.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
15.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
16.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
17.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
18.
Megalingam
,
A.
, and
Mayuram
,
M. M.
,
2012
, “
Comparative Contact Analysis Study of Finite Element Method Based Deterministic, Simplified Multi-Asperity and Modified Statistical Contact Models
,”
ASME J. Tribol.
,
134
(
1
), p.
014503
.
19.
Kogut
,
L.
, and
Etsion
,
I.
,
2004
, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
,
126
(
1
), pp.
34
40
.
20.
Poon
,
C. Y.
, and
Bhushan
,
B.
,
1996
, “
Numerical Contact and Stiction Analyses of Gaussian Isotropic Surfaces for Magnetic Head Slider/Disk Contact
,”
Wear
,
202
(
1
), pp.
68
82
.
21.
Sofuoglu
,
H.
, and
Ozer
,
A.
,
2008
, “
Thermomechanical Analysis of Elastoplastic Medium in Sliding Contact With Fractal Surface
,”
Tribol. Int.
,
41
(
8
), pp.
783
796
.
22.
Huang
,
J.
,
Gao
,
C.
,
Chen
,
J.
, and
Zeng
,
X.
,
2014
, “
Analysis of Real Contact Area Between an Elasto-Plastic Rough Body and an Elasto-Plastic Flat Body
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
228
(
10
), pp.
1174
1179
.
23.
Huang
,
J.
,
Gao
,
C.
,
Chen
,
J.
,
Lin
,
X.
, and
Ren
,
Z.
,
2015
, “
Thermomechanical Analysis of an Elastoplastic Rough Body in Sliding Contact With Flat Surface and the Effect of Adjacent Contact Asperity
,”
Adv. Mech. Eng.
,
7
(
5
), pp.
1
10
.
24.
Gong
,
Z.-Q.
, and
Komvopoulos
,
K.
,
2005
, “
Contact Fatigue Analysis of an Elastic-Plastic Layered Medium With a Surface Crack in Sliding Contact With a Fractal Surface
,”
ASME J. Tribol.
,
127
(
3
), pp.
503
512
.
25.
Ozer
,
A.
, and
Sofuoglu
,
H.
,
2009
, “
Thermo-Mechanical Analysis of the Magnetic Head-Disk Interface With a Fractal Surface Description
,”
Wear
,
266
(
11–12
), pp.
1185
1197
.
26.
Sahoo
,
P.
, and
Ghosh
,
N.
,
2007
, “
Finite Element Contact Analysis of Fractal Surfaces
,”
J. Phys. D. Appl. Phys
,
40
(
14
), pp.
4245
4252
.
27.
Hu
,
Z.
,
Lu
,
W.
, and
Thouless
,
M. D.
,
2015
, “
Slip and Wear at a Corner With Coulomb Friction and an Interfacial Strength
,”
Wear
,
338–339
, pp.
242
251
.
28.
Wu
,
A.
,
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2012
, “
An Elastic-Plastic Spherical Contact Model Under Combined Normal and Tangential Loading
,”
ASME J. Appl. Mech
,
79
(
5
), p.
051001
.
29.
Shi
,
X.
,
2014
, “
On Slip Inception and Static Friction for Smooth Dry Contact
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121005
.
30.
Shi
,
X.
,
Zou
,
Y.
, and
Fang
,
H.
,
2016
, “
Numerical Investigation of the Three-Dimensional Elastic–Plastic Sloped Contact Between Two Hemispheric Asperities
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101004
.
31.
Mulvihill
,
D. M.
,
Kartal
,
M. E.
,
Nowell
,
D.
, and
Hills
,
D. A.
,
2011
, “
An Elastic-Plastic Asperity Interaction Model for Sliding Friction
,”
Tribol. Int.
,
44
(
12
), pp.
1679
1694
.
You do not currently have access to this content.