Contact fatigue is a main fatigue mode of gears such as those used in wind turbines, due to heavy duties occurring in engineering practice. The understanding of the gear contact fatigue should be based on the interaction between the local material strength and the stress state. Under the rolling–sliding motion, the multi-axial stress state makes the gear contact fatigue problem more complicated. A numerical contact model is proposed to evaluate the contact fatigue life of an intermediate parallel gear stage of a megawatt level wind turbine gearbox. The gear meshing theory is applied to calculate the geometry kinematics parameters of the gear pair. The gear contact is assumed as a plane strain contact problem without the consideration of the influence of the helical angle. The quasi-static tooth surface load distribution is assumed along the line of action. The elastic mechanics theory is used to calculate the elastic stress field generated by surface tractions. The discrete convolute, fast Fourier transformation method is applied to estimate the subsurface stresses distributions. In order to describe the time-varying multi-axial stress states during contact, the Matake, Findley, and Dang Van multi-axial fatigue criteria are used to calculate the critical planes and equivalent stresses. Both the statistic and the deterministic fatigue life models are applied by choosing the Lundberg–Palmgren (LP), Zaretsky models, respectively. The effect of the residual stress distribution on the contact fatigue initiation lives is discussed. In addition, the crack propagation lives are estimated by using the Paris theory.

References

References
1.
Link
,
H.
,
Lacava
,
W.
,
Van Dam
,
J.
,
Mcniff
,
B.
,
Sheng
,
S.
,
Wallen
,
R.
,
Mcdade
,
M.
,
Lambert
,
S.
,
Butterfield
,
S.
, and
Oyague
,
F.
,
2011
, “Gearbox Reliability Collaborative Project Report: Findings From Phase 1 and Phase 2 Testing,” National Renewable Energy Laboratory (NREL), Golden, CO, Report No.
NREL/TP-5000-51885
.
2.
Liu
,
H.
,
Mao
,
K.
,
Zhu
,
C.
,
Chen
,
S.
,
Xu
,
X.
, and
Liu
,
M.
,
2013
, “
Spur Gear Lubrication Analysis With Dynamic Loads
,”
Tribol. Trans.
,
56
(
1
), pp.
41
48
.
3.
Liu
,
H.
,
Mao
,
K.
,
Zhu
,
C.
, and
Xu
,
X.
,
2012
, “
Mixed Lubricated Line Contact Analysis for Spur Gears Using a Deterministic Model
,”
ASME J. Tribol.
,
134
(
2
), p.
021501
.
4.
Zhou
,
W.
,
Tang
,
J.
,
He
,
Y.
, and
Liao
,
D.
,
2015
, “
Associated Rules Between Microstructure Characterization Parameters and Contact Characteristic Parameters of Two Cylinders
,”
J. Central South Univ.
,
22
(
11
), pp.
4228
4234
.
5.
Liu
,
H.
,
Zhu
,
C.
,
Zhang
,
Y.
,
Wang
,
Z.
, and
Song
,
C.
,
2016
, “
Tribological Evaluation of a Coated Spur Gear Pair
,”
Tribol. Int.
,
99
, pp.
117
126
.
6.
Qiao
,
H.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2008
, “
Comparison of Fatigue Model Results for Rough Surface Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J
,
222
(
3
), pp.
381
393
.
7.
Paulson
,
N. R.
,
Golmohammadi
,
Z.
,
Walvekar
,
A. A.
,
Sadeghi
,
F.
, and
Mistry
,
K.
,
2017
, “
Rolling Contact Fatigue in Refurbished Case Carburized Bearings
,”
Tribol. Int.
,
115
, pp. 348–364.
8.
Walvekar
,
A. A.
, and
Sadeghi
,
F.
,
2017
, “
Rolling Contact Fatigue of Case Carburized Steels
,”
Int. J. Fatigue
,
95
, pp.
264
281
.
9.
Paulson
,
N. R.
,
Sadeghi
,
F.
, and
Habchi
,
W.
,
2017
, “
A Coupled Finite Element EHL and Continuum Damage Mechanics Model for Rolling Contact Fatigue
,”
Tribol. Int.
,
107
, pp. 173–183.
10.
Li
,
S.
,
Kahraman, A.
, and
Klein, M.
,
2012
, “
A Fatigue Model for Spur Gear Contacts Operating Under Mixed Elastohydrodynamic Lubrication Conditions
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041007
.
11.
Brandão
,
J. A.
,
Seabra
,
J. H. O.
, and
Castro
,
J.
,
2010
, “
Surface Initiated Tooth Flank Damage—Part I: Numerical Model
,”
Wear
,
268
(
1–2
), pp.
1
12
.
12.
Zhu
,
D.
,
Wang
,
Q. J.
, and
Ren
,
N.
,
2009
, “
Pitting Life Prediction Based on a 3-D Line Contact Mixed EHL Analysis and Subsurface von Mises Stress Calculation
,”
Advanced Tribology
, Springer, Berlin, pp.
178
179
.
13.
Hua
,
Q.
,
2005
, “Prediction of Contact Fatigue for the Rough Surface Elastohydrodynamic Lubrication Line Contact Problem Under Rolling and Sliding Conditions,”
Ph.D. thesis
, Cardiff University, Cardiff, Wales.
14.
Sadeghi, F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p. 041403.
15.
Aid
,
A.
,
Bendouba
,
M.
,
Aminallah
,
L.
,
Amrouche
,
A.
,
Benseddiq
,
N.
, and
Benguediab
,
M.
,
2012
, “
An Equivalent Stress Process for Fatigue Life Estimation Under Multiaxial Loadings Based on a New Non Linear Damage Model
,”
Mater. Sci. Eng., A
,
538
(
3
), pp.
20
27
.
16.
Mcdiarmid
,
D. L.
,
1994
, “
A Shear Stress Based Critical-Plane Criterion of Multiaxial Fatigue Failure for Design and Life Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
12
), pp.
1475
1484
.
17.
Jalalahmadi
,
B.
,
Sadeghi
,
F.
, and
Bakolas
,
V.
,
2011
, “
Material Inclusion Factors for Lundberg-Palmgren–Based RCF Life Equations
,”
Tribol. Trans.
,
54
(
3
), pp.
457
469
.
18.
Agha
,
S. R.
,
2000
, “
Fatigue Performance of Superfinish Hard Turned Surfaces in Rolling Contact
,”
Wear
,
244
(
1–2
), pp.
52
59
.
19.
Allison
,
B. D.
,
2013
, “Evolution of Mechanical Properties of M50 Bearing Steel Due to Rolling Contact Fatigue,”
Ph.D. thesis
, University of Florida, Gainesville, FL.
20.
Jeon
,
H. B.
,
Song
,
T. H.
,
Huh
,
S. C.
, and
Park
,
W. J.
,
2007
, “
Evaluation on Fatigue Characteristics of Aluminum Alloys by Compressive Residual Stress
,”
International Conference on Physical and Numerical Simulation of Materials Processing
, Zhengzhou, China, Oct. 23–27, pp. 2129–2137.
21.
Shea, M. M.
, 1980, “
Residual Stress and Microstructure in Quenched and Tempered and Hot Oil Quenched Carburized Gears
,”
J. Heat Treating
,
1
(4), pp. 29–36.
22.
Moulik
,
P. N.
,
Yang
,
H. T. Y.
, and
Chandrasekar
,
S.
,
2001
, “
Simulation of Thermal Stresses Due to Grinding
,”
Int. J. Mech. Sci.
,
43
(
3
), pp.
831
851
.
23.
Pape
,
F.
,
Neubauer
,
T.
,
Maiß
,
O.
,
Denkena
,
B.
, and
Poll
,
G.
,
2017
, “
Influence of Residual Stresses Introduced by Manufacturing Processes on Bearing Endurance Time
,”
Tribol. Lett.
,
65
(
2
), p.
70
.
24.
Kim
,
J.
,
2015
, “Numerical Approach for Predicting Fatigue Crack Growth in Residual Stress Bearing Bodies,”
Ph.D. thesis
, University of California, Davis, CA.
25.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
26.
Karolczuk
,
A.
, and
Macha
,
E.
,
2005
, “
A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials
,”
Int. J. Fract.
,
134
(
3–4
), pp.
267
304
.
27.
Ciavarella
,
M.
,
Monno
,
F.
, and
Demelio
,
G.
,
2006
, “
Maps for the Dang Van Fatigue Limit in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
28
(
8
), pp.
852
863
.
28.
Charkaluk
,
E.
,
Constantinescu
,
A.
,
Maïtournam
,
H.
, and
Van
,
K. D.
,
2009
, “
Revisiting the Dang Van Criterion
,”
Procedia Eng.
,
1
(
1
), pp.
143
146
.
29.
Cerullo
,
M.
,
2014
, “
Application of Dang Van Criterion to Rolling Contact Fatigue in Wind Turbine Roller Bearings
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
12
), pp.
2079
2089
.
30.
Harris
,
T. A.
, and
Yu
,
W. K.
,
1999
, “
Lundberg-Palmgren Fatigue Theory: Considerations of Failure Stress and Stressed Volume
,”
ASME J. Tribol.
,
121
(
1
), pp.
85
89
.
31.
Yan
,
X. L.
,
Wang
,
X. L.
, and
Zhang
,
Y. Y.
,
2014
, “
A Numerical Study of Fatigue Life in Non-Newtonian Thermal EHL Rolling–Sliding Contacts With Spinning
,”
Tribol. Int.
,
80
, pp.
156
165
.
32.
Zhu
,
D.
,
2003
, “
Effect of Surface Roughness on Mixed EHD Lubrication Characteristics
,”
Tribol. Trans.
,
46
(
1
), pp.
44
48
.
33.
Coy
,
J. J.
,
Townsend, D. P.
, and
Zaretsky, E. V.
,
1975
, “Analysis of Dynamic Capacity of Low-Contact-Ratio Spur Gears Using Lundberg-Palmgren Theory,” NASA Lewis Research Center; Cleveland, OH, Report No.
NASA-TN-D-8029
.
34.
Glodež
,
S.
,
Winter
,
H.
, and
Stüwe
,
H. P.
,
1997
, “
A Fracture Mechanics Model for the Wear of Gear Flanks by Pitting
,”
Wear
,
208
(
1–2
), pp.
177
183
.
35.
Glodež
,
S.
,
Flašker
,
J.
, and
Ren
,
Z.
,
1997
, “
A New Model for the Numerical Determination of Pitting Resistance of Gear Teeth Flanks
,”
Fatigue Fract. Eng. Mater. Struct.
,
20
(
1
), pp.
71
83
.
36.
Glodež
,
S.
,
Aberšek
,
B.
,
Flašker
,
J.
, and
Ren
,
Z.
,
2004
, “
Evaluation of the Service Life of Gears in Regard to Surface Pitting
,”
Eng. Fract. Mech.
,
71
(
4–6
), pp.
429
438
.
37.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
.
38.
Kramberger
,
J.
,
Šraml
,
M.
,
Glodež
,
S.
,
Flašker
,
J.
, and
Potrč
,
I.
,
2004
, “
Computational Model for the Analysis of Bending Fatigue in Gears
,”
Comput. Struct.
,
82
(
23–26
), pp.
2261
2269
.
You do not currently have access to this content.