This paper reports a new three-dimensional model for heat conduction in a half-space containing inhomogeneities, applicable to frictional heat transfer, together with a novel combined algorithm of the equivalent inclusion method (EIM) and the imaging inclusion approach for building this model. The influence coefficients (ICs) for temperature and heat flux are obtained via converting the frequency response function (FRF) and integrating Green's function. The model solution is based on the discrete convolution and fast Fourier transform (DC-FFT) algorithm using the ICs, convenient for solving problems involving multiple elliptical inhomogeneities with arbitrary orientations. A group of parametric studies are conducted for understanding the thermal fields in the inhomogeneous half-space due to surface frictional heating, influenced by the properties of the inhomogeneity, its depth, and orientation.

References

References
1.
Batchelor
,
G. K.
,
1974
, “
Transport Properties of Two-Phase Materials With Random Structure
,”
Annu. Rev. Fluid Mech.
,
6
, pp.
227
255
.
2.
Demir
,
H.
,
Koyun
,
A.
,
Atayılmaz
,
Ş Ö.
,
Ağra
,
Ö.
, and
Dalkılıç
,
A. S.
,
2013
, “
Investigation of the Effects of Geometrical Parameters on Heat Transfer From Buried Finned Pipes
,”
J. Mech. Sci. Technol.
,
27
(
8
), pp.
2497
2506
.
3.
Rossi di Schio
,
E.
,
Lazzari
,
S.
, and
Abbati
,
A.
,
2016
, “
Natural Convection Effects in the Heat Transfer From a Buried Pipeline
,”
Appl. Therm. Eng.
,
102
, pp.
227
233
.
4.
Kong
,
X. R.
,
Deng
,
Y.
,
Li
,
L.
,
Gong
,
W. S.
, and
Cao
,
S. J.
,
2017
, “
Experimental and Numerical Study on the Thermal Performance of Ground Source Heat Pump With a Set of Designed Buried Pipes
,”
Appl. Therm. Eng.
,
114
, pp.
110
117
.
5.
Barroso
,
J.
,
Renau
,
J.
,
Lozano
,
A.
,
Miralles
,
J.
,
Martín
,
J.
,
Sánchez
,
F.
, and
Barreras
,
F.
,
2015
, “
Experimental Determination of the Heat Transfer Coefficient for the Optimal Design of the Cooling System of a PEM Fuel Cell Placed Inside the Fuselage of an UAV
,”
Appl. Therm. Eng.
,
89
, pp.
1
10
.
6.
Li
,
A.
,
Yang
,
C.
, and
Ren
,
T.
,
2016
, “
Modeling and Parametric Studies for Convective Heat Transfer in Large, Long and Rough Circular Cross-Sectional Underground Tunnels
,”
Energy Build.
,
127
, pp.
259
267
.
7.
Mathur
,
A.
,
Mathur
,
S.
,
Agrawal
,
G. D.
, and
Mathur
,
J.
,
2017
, “
Comparative Study of Straight and Spiral Earth Air Tunnel Heat Exchanger System Operated in Cooling and Heating Modes
,”
Renewable Energy
,
108
, pp.
474
487
.
8.
Paul
,
A.
,
Narasimhan
,
A.
,
Kahlen
,
F. J.
, and
Das
,
S. K.
,
2014
, “
Temperature Evolution in Tissues Embedded With Large Blood Vessels During Photo-Thermal Heating
,”
J. Therm. Boil.
,
41
, pp.
77
87
.
9.
Kumar
,
S.
, and
Srivastava
,
A.
,
2016
, “
Numerical Investigation of the Influence of Pulsatile Blood Flow on Temperature Distribution Within the Body of Laser-Irradiated Biological Tissue Phantoms
,”
Int. J. Heat Mass Transfer
,
95
, pp.
662
677
.
10.
Raval
,
A. H.
,
Solanki
,
S. C.
, and
Yadav
,
R.
,
2013
, “
A Simplified Heat Transfer Model for Predicting Temperature Change Inside Food Package Kept in Cold Room
,”
Int. J. Food Sci. Technol.
,
50
(
2
), pp.
257
265
.
11.
Getahun
,
S.
,
Ambaw
,
A.
,
Delele
,
M.
,
Meyer
,
C. J.
, and
Opara
,
U. L.
,
2017
, “
Analysis of Airflow and Heat Transfer Inside Fruit Packed Refrigerated Shipping Container: Part II—Evaluation of Apple Packaging Design and Vertical Flow Resistance
,”
J. Food Eng.
,
203
, pp.
83
94
.
12.
Barber
,
J. R.
,
1972
, “
Distortion of the Semi-Infinite Solid Due to Transient Surface Heating
,”
Int. J. Mech. Sci.
,
14
(
6
), pp.
377
393
.
13.
Bryant
,
M.
,
1988
, “
Thermoelastic Solutions for Thermal Distributions Moving Over Half Space Surfaces and Application to the Moving Heat Source
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
87
92
.
14.
Ju
,
Y.
, and
Farris
,
T. N.
,
1997
, “
FFT Thermoelastic Solution for Moving Heat Sources
,”
ASME J. Tribol.
,
119
(
1
), pp.
156
162
.
15.
Liu
,
S. B.
, and
Wang
,
Q.
,
2003
, “
Transient Thermoelastic Stress Fields in a Half-Space
,”
ASME J. Tribol.
,
125
(
1
), pp.
33
43
.
16.
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2008
, “
Thermomechanical Analysis of Elastoplastic Bodies in a Sliding Spherical Contact and the Effects of Sliding Speed, Heat Partition, and Thermal Softening
,”
ASME J. Tribol.
,
130
(4), p.
041402
.
17.
Eshelby
,
J. D.
, and
John
,
D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London A
,
241
(
1226
), pp.
376
396
.
18.
Hiroshi
,
H.
, and
Taya
,
M.
,
1986a
, “
Equivalent Inclusion Method for Steady State Heat Conduction in Composites
,”
Int. J. Eng. Sci.
,
24
(
7
), pp.
1159
1172
.
19.
Tanaka
,
M.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall. Sin.
,
21
(
5
), pp.
571
574
.
20.
Hatta
,
H.
, and
Taya
,
M.
,
1985
, “
Effective Thermal Conductivity of a Misoriented Short Fiber Composite
,”
J. Appl. Phys.
,
58
(
7
), pp.
2478
2486
.
21.
Hatta
,
H.
, and
Taya
,
M.
,
1986
, “
Thermal Conductivity of Coated Filler Composites
,”
J. Appl. Phys.
,
59
(
6
), pp.
1851
1860
.
22.
Dunn
,
M. L.
, and
Taya
,
M.
,
1993
, “
The Effective Thermal Conductivity of Composites With Coated Reinforcement and the Application to Imperfect Interfaces
,”
J. Appl. Phys.
,
73
(
4
), pp.
1711
1722
.
23.
Chen
,
C. H.
, and
Wang
,
Y. C.
,
1996
, “
Effective Thermal Conductivity of Misoriented Short-Fiber Reinforced Thermoplastics
,”
Mech. Mater
,
23
(
3
), pp.
217
228
.
24.
Jeong
,
H.
,
Hsu
,
D. K.
, and
Liaw
,
P. K.
,
1998
, “
Anisotropic Conductivities of Multiphase Particulate Metal-Matrix Composites
,”
Compos. Sci. Technol.
,
58
(
1
), pp.
65
76
.
25.
Mikata
,
Y.
,
2016
, “
Analytical Treatment on the Effective Material Properties of a Composite Material With Spheroidal and Ellipsoidal Inhomogeneities in an Isotropic Matrix
,”
J. Micromech. Mol. Phys.
,
1
, p.
1640012
.
26.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
,
2005
, “
Effective Thermal Conductivity of Two-Phase Functionally Graded Particulate Composites
,”
J. Appl. Phys.
,
98
(6), p.
063704
.
27.
Lee
,
J. K.
,
2007
, “
Prediction of Thermal Conductivity of Composites With Spherical Fillers by Successive Embedding
,”
Arch. Appl. Mech.
,
77
(
7
), pp.
453
–4
60
.
28.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
,
2008
, “
Heat Flux Field for One Spherical Inhomogeneity Embedded in a Functionally Graded Material Matrix
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3018
3024
.
29.
Park
,
Y. K.
,
Kim
,
J. G.
, and
Lee
,
J. K.
,
2008
, “
Prediction of Thermal Conductivity of Composites With Spherical Microballoons
,”
Mater. Trans.
,
49
(
12
), pp.
2781
2785
.
30.
Marcos-Gomez
,
D.
,
Ching-Lloyd
,
J.
,
Elizalde
,
M. R.
,
Clegg
,
W. J.
, and
Molina-Aldareguia
,
J. M.
,
2010
, “
Predicting the Thermal Conductivity of Composite Materials With Imperfect Interfaces
,”
Compos. Sci. Technol.
,
70
(
16
), pp.
2276
2283
.
31.
Dong
,
C. Y.
,
2015
, “
An Interface Integral Formulation of Heat Energy Calculation of Steady State Heat Conduction in Heterogeneous Media
,”
Int. J. Heat Mass Transfer
,
90
, pp.
314
322
.
32.
Liu
,
J.
,
Xu
,
S.
, and
Zeng
,
Q.
,
2017
, “
A Multi-Scale Micromechanical Investigation on Thermal Conductivity of Cement-Based Composites
,”
Mater. Sci. Eng.
,
167
, p.
012069
.
33.
Jin
,
X. Q.
,
Wang
,
Z. J.
,
Zhou
,
Q. H.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2014
, “
On the Solution of an Elliptical Inhomogeneity in Plane Elasticity by the Equivalent Inclusion Method
,”
J. Elasticity
,
114
(
1
), pp.
1
8
.
34.
Chiu
,
Y. P.
,
1978
, “
On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains are Uniform
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
302
306
.
35.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
36.
Mura
,
T.
,
2013
,
Micromechanics of Defects in Solids
,
Springer Science & Business Media
,
Evanston, IL
.
37.
Liu
,
S. B.
,
Rodgers
,
M. J.
,
Wang
,
Q.
, and
Keer
,
L. M.
,
2001
, “
A Fast and Effective Method for Transient Thermoelastic Displacement Analyses
,”
ASME J. Tribol.
,
123
(
3
), pp.
479
–4
85
.
You do not currently have access to this content.