The coupled impact and rolling wear behavior of the medium-manganese austenitic steel (Mn8) were studied by comparison with the traditional Hadfield (Mn13) steel. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), and transmission electron microscope (TEM) were used to analyze the wear and hardening mechanisms. The experimental results show that the impact and rolling wear resistance of hot-rolled medium-manganese steel (Mn8) is better than that of high-manganese steel (Mn13) under conditions of low-impact load. The better work hardening sensitivity effectively improves the wear resistance of medium-manganese steel. Not only the coefficient of friction is low, but the mass loss and wear rate of the wear are lower than that of high-manganese steel. After impact and rolling wear, a hardened layer with a thickness of about 600 μm is formed on the wear surface. The highest microhardness of the subsurface layer for Mn8 is about 594 HV and the corresponding Rockwell hardness is about 55 HRC, showing the remarkable work hardening effect. The wear-resistant strengthening mechanism of medium-manganese steel is compound strengthening, including the deformation-induced martensitic transformation, dislocation strengthening, and twin strengthening. In initial stages of impact and rolling abrasion, dislocation strengthening plays a major role. When the deformation reaches a certain extent, the deformation-induced martensitic transformation and twinning strengthening begin to play a leading role.

References

References
1.
Bayraktar
,
E.
,
Khalid
,
F. A.
, and
Levaillant
,
C.
,
2004
, “
Deformation and Fracture Behaviour of High Manganese Austenitic Steel
,”
J. Mater. Process. Technol.
,
147
(
2
), pp.
145
154
.
2.
Kishore
,
Sampathkumaran
,
P.
, and
Seetharamu
,
S.
,
2005
, “
Erosion and Abrasion Characteristics of High Manganese Chromium Irons
,”
Wear
,
259
(
1–6
), pp.
70
77
.
3.
Efstathiou
,
C.
, and
Sehitoglu
,
H.
,
2010
, “
Strain Hardening and Heterogeneous Deformation During Twinning in Hadfield Steel
,”
Acta Mater.
,
58
(
5
), pp.
1479
1488
.
4.
Xiong
,
R.
,
Peng
,
H.
,
Wang
,
S.
,
Si
,
H.
, and
Wen
,
Y.
,
2016
, “
Effect of Stacking Fault Energy on Work Hardening Behaviors in Fe–Mn–Si–C High Manganese Steels by Varying Silicon and Carbon Contents
,”
Mater. Des.
,
85
, pp.
707
714
.
5.
Smith
,
R. W.
,
Demonte
,
A.
, and
Mackay
,
W. B. F.
,
2011
, “
Development of High-Manganese Steels for Heavy Duty Cast-to-Shape Applications
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
784
784
.
6.
Kopac
,
J.
,
2001
, “
Hardening Phenomena of Mn-Austenite Steels in the Cutting Process
,”
J. Mater. Process. Technol.
,
109
(
1–2
), pp.
96
104
.
7.
Hutchinson
,
B.
, and
Ridley
,
N.
,
2006
, “
On Dislocation Accumulation and Work Hardening in Hadfield Steel
,”
Scr. Mater.
,
55
(
4
), pp.
299
302
.
8.
Canadinc
,
D.
,
Sehitoglu
,
H.
,
Maier
,
H. J.
, and
Chumlyakov
,
Y. I.
,
2005
, “
Strain Hardening Behavior of Aluminum Alloyed Hadfield Steel Single Crystals
,”
Acta, Mater.
,
53
(
6
), pp.
1831
1842
.
9.
Si
,
H.
,
Xiong
,
R.
,
Song
,
F.
,
Wen
,
Y.
, and
Peng
,
H.
,
2014
, “
Wear Resistance of Austenitic Steel Fe–17Mn–6Si–0.3C with High Silicon and High Manganese
,”
Acta. Met. Sin.
,
27
(
2
), pp.
352
358
.
10.
Jost
,
N.
, and
Schmidt
,
I.
,
1986
, “
Friction-Induced Martensitic Transformation in Austenitic Manganese Steels
,”
Wear
,
111
(
4
), pp.
377
389
.
11.
Chen
,
J.
,
Lv
,
M. Y.
,
Liu
,
Z. Y.
, and
Wang
,
G. D.
,
2015
, “
Combination of Ductility and Toughness by the Design of Fine Ferrite/Tempered Martensite–Austenite Microstructure in a Low Carbon Medium Manganese Alloyed Steel Plate
,”
Mater. Sci. Eng. A
,
648
, pp.
51
56
.
12.
Xiong
,
R.
,
Wang
,
S.
,
Peng
,
H.
,
Si
,
H.
, and
Wen
,
Y.
,
2015
, “
Occurrence Sequence of Deformation-Induced ε-Martensite and Mechanical Twinning in an Fe–17Mn–3Si–0.6C High Manganese Steel
,”
Steel Res. Int.
,
86
(
11
), pp.
1252
1259
.
13.
Daamen
,
M.
,
Wietbrock
,
B.
,
Richter
,
S.
, and
Hirt
,
G.
,
2011
, “
Strip Casting of a High-Manganese Steel (FeMn22C0.6) Compared With a Process Chain Consisting of Ingot Casting and Hot Forming
,”
Steel. Res. Int.
,
82
(
1
), pp.
70
75
.
14.
Lee
,
Y. K.
, and
Han
,
J.
,
2015
, “
Current Opinion in Medium Manganese Steel
,”
Mater. Sci. Technol.
,
31
(
7
), pp.
843
856
.
15.
He
,
Z. M.
,
Jiang
,
Q. C.
,
Fu
,
S. B.
, and
Xie
,
J. P.
,
1987
, “
Improved Work-Hardening Ability and Wear Resistance of Austenitic Manganese Steel Under Non-Severe Impact-Loading Conditions
,”
Wear
,
120
(
3
), pp.
305
319
.
16.
Andrés
,
C. G. D.
,
Capdevila
,
C.
,
Martín
,
D. S.
, and
Caballero
,
F. G.
,
2002
, “
Effect of Titanium on the Allotriomorphic Ferrite Transformation Kinetics in Medium Carbon-Manganese Steels
,”
Mater. Sci. Eng. A
,
328
(
1–2
), pp.
156
160
.
17.
Gibbs
,
P. J.
,
Cooman
,
B. C. D.
,
Brown
,
D. W.
,
Clausen
,
B.
,
Schroth
,
J. G.
,
Merwin
,
M. J.
, and
Matlock
,
D. K.
,
2014
, “
Strain Partitioning in Ultra-Fine Grained Medium-Manganese Transformation Induced Plasticity Steel
,”
Mater. Sci. Eng. A
,
609
(9), pp.
323
333
.
18.
Nakada
,
N.
,
Mizutani
,
K.
,
Tsuchiyama
,
T.
, and
Takaki
,
S.
,
2014
, “
Difference in Transformation Behavior Between Ferrite and Austenite Formations in Medium Manganese Steel
,”
Acta Mater.
,
65
, pp.
251
258
.
19.
Ojala
,
N.
,
Valtonen
,
K.
,
Heino
,
V.
,
Kallio
,
M.
,
Aaltonen
,
J.
,
Siitonen
,
P.
, and
Kuokkala
,
V. T.
,
2014
, “
Effects of Composition and Microstructure on the Abrasive Wear Performance of Quenched Wear Resistant Steels
,”
Wear
,
317
(
1–2
), pp.
225
232
.
20.
Song
,
Y. P.
,
Xie
,
J. P.
,
Zhu
,
Y. M.
, and
Wang
,
A. Q.
,
2002
, “
Effect of RE-Modifier on Microstructure and Mechanical Property of High-Carbon Medium-Manganese Steel
,”
J. Iron Steel Res. Int.
,
9
(
1
), pp.
36
39
.
21.
Farahat
,
A. I. Z.
,
Hamed
,
O.
,
El-Sisi
,
A.
, and
Hawash
,
M.
,
2011
, “
Effect of Hot Forging and Mn Content on Austenitic Stainless Steel Containing High Carbon
,”
Mater. Sci. Eng. A
,
530
(
1
), pp.
98
106
.
22.
Varshney
,
A.
,
Sangal
,
S.
,
Kundu
,
S.
, and
Mondal
,
K.
,
2016
, “
Superior Work Hardening Behavior of Moderately High Carbon Low Alloy Super Strong and Ductile Multiphase Steels With Dispersed Retained Austenite
,”
Mater. Des.
,
99
, pp.
439
448
.
23.
Karaman
,
I.
,
Sehitoglu
,
H.
,
Chumlyakov
,
Y. I.
,
Maier
,
H. J.
, and
Kireeva
,
I. V.
,
2001
, “
Extrinsic Stacking Faults and Twinning in Hadfield Manganese Steel Single Crystals
,”
Scr. Mater.
,
44
(
2
), pp.
337
343
.
24.
Dan
,
W. J.
,
Li
,
S. H.
,
Zhang
,
W. G.
, and
Lin
,
Z. Q.
,
2008
, “
The Effect of Strain-Induced Martensitic Transformation on Mechanical Properties of TRIP Steel
,”
Mater. Des.
,
29
(
3
), pp.
604
612
.
25.
Barbier
,
D.
,
Gey
,
N.
,
Allain
,
S.
,
Bozzolo
,
N.
, and
Humbert
,
M.
,
2009
, “
Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions
,”
Mater. Sci. Eng. A
,
500
(
1–2
), pp.
196
206
.
26.
Han
,
H. N.
,
Oh
,
C. S.
,
Kim
,
G.
, and
Kwon
,
O.
,
2009
, “
Design Method for TRIP-Aided Multiphase Steel Based on a Microstructure-Based Modelling for Transformation-Induced Plasticity and Mechanically Induced Martensitic Transformation
,”
Mater. Sci. Eng. A
,
499
(
1–2
), pp.
462
468
.
27.
Frommeyer
,
G.
,
Brux
,
U.
, and
Neumann
,
P.
,
2003
, “
Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes
,”
ISIJ. Int.
,
43
(
3
), pp.
438
446
.
You do not currently have access to this content.