Due to its high mechanical strength, exceptional biocompatibility, low elastic modulus, and superior corrosion resistance, Ti13Nb13Zr alloy is one of the potential candidates for implanted joints. However, the poor tribological property of Ti13Nb13Zr alloy has greatly limited its wide usage in artificial joints. The elevated temperature solid carburizing technology was used to improve tribological property of Ti13Nb13Zr alloy. It was found that the surface hardness of Ti13Nb13Zr alloy was increased to 812 HV after the carburization at 1523 K due to the formation of titanium carbide on the surface. With the increase in experimental temperature, the thickness of the carburized layer increased to 120 μm. In addition, the wear rate of Ti13Nb13Zr alloy decreased by 63.9% under serum lubrication condition after the carburization at 1473 K due to the formation of hard TiC on the surface of Ti13Nb13Zr.

References

References
1.
Luo
,
Y.
,
Jiang
,
H.
,
Cheng
,
G.
, and
Liu
,
H.
,
2011
, “
Effect of Carburization on the Mechanical Properties of Biomedical Grade Titanium Alloys
,”
J. Bionic Eng.
,
8
(
1
), pp.
86
89
.
2.
Luo
,
Y.
,
Chai
,
W.
,
Yang
,
L.
,
Tian
,
M.
,
Xu
,
H.
, and
Chen
,
W.
,
2014
, “
The Surface Characterization of Microporous Titanium Carbide Coating on Titanium Alloys
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
5
), pp.
521
527
.
3.
Luo
,
Y.
,
Ge
,
S.
,
Zhang
,
D.
,
Wang
,
Q.
, and
Liu
,
H.
,
2011
, “
Fretting Wear of Carburized Titanium Alloy Against ZrO2 Under Serum Lubrication
,”
Tribol. Int.
,
44
(
11
), pp.
1471
1475
.
4.
Singh
,
R.
,
Tiwari
,
S. K.
,
Mishra
,
S. K.
, and
Dahotre
,
N. B.
,
2011
, “
Electrochemical and Mechanical Behavior of Laser Processed Ti–6Al–4V Surface in Ringer's Physiological Solution
,”
J. Mater. Sci.: Mater. Med.
,
22
(
8
), pp.
1787
1796
.
5.
Lopes
,
E. S. N.
,
Contieri
,
R. J.
,
Button
,
S. T.
, and
Caram
,
R.
,
2015
, “
Femoral Hip Stem Prosthesis Made of Graded Elastic Modulus Metastable β Ti Alloy
,”
Mater. Des.
,
69
, pp.
30
36
.
6.
Feng
,
S. R.
,
Tang
,
H. B.
,
Zhang
,
S. Q.
, and
Wang
,
H. M.
,
2012
, “
Microstructure and Wear Resistance of Laser Clad TiB–TiC/TiNi–Ti2Ni Intermetallic Coating on Titanium Alloy
,”
Trans. Nonferrous Met. Soc. China
,
22
(7), pp.
1667
1673
.
7.
Bacroix
,
B.
,
Lahmari
,
M.
,
Inglebert
,
G.
, and
Caron
,
I. L.
,
2011
, “
A Modified Oxygen Boost Diffusion Treatment for Ti Alloys and Associated Tribological Properties With Respect to Biological Environment
,”
Wear
,
271
(
11
), pp.
2720
2727
.
8.
Wang
,
Q.
,
Zhang
,
X.
,
Huang
,
C.
, and
Luo
,
Y.
,
2017
, “
Ion Nitriding CoCrMo Alloy for Orthopedic Applications Studied by X-Ray Photoelectron Spectroscopy Analysis and Tribocorrosion Behavior
,”
ASME J. Tribol.
,
139
(
1
), p.
011104
.
9.
Madina
,
V.
, and
Azkarate
,
I.
,
2017
, “
Compatibility of Materials With Hydrogen. Particular Case: Hydrogen Embrittlement of Titanium Alloys
,”
Int. J. Hydrogen Energy
,
34
(
14
), pp.
5976
5980
.
10.
Semboshi
,
S.
,
Iwase
,
A.
, and
Takasugi
,
T.
,
2015
, “
Surface Hardening of Age-Hardenable Cu–Ti Alloy by Plasma Carburization
,”
Surf. Coat. Technol.
,
283
, pp.
262
267
.
11.
Jiang
,
X. J.
,
Zhou
,
Y. K.
,
Feng
,
Z. H.
,
Xia
,
C. Q.
,
Tan
,
C. L.
, and
Liang
,
S. X.
,
2015
, “
Influence of Zr Content on β-Phase Stability in α-Type Ti–Al Alloys
,”
Mater. Sci. Eng., A
,
639
, pp.
407
411
.
12.
Ozan
,
S.
,
Lin
,
J.
,
Li
,
Y.
,
Ipek
,
R.
, and
Wen
,
C.
,
2015
, “
Development of Ti–Nb–Zr Alloys With High Elastic Admissible Strain for Temporary Orthopedic Devices
,”
Acta Biomater.
,
20
, pp.
176
187
.
13.
Ou
,
K. L.
,
Weng
,
C. C.
,
Lin
,
Y. H.
, and
Huang
,
M. S.
,
2016
, “
A Promising of Alloying Modified Beta-Type Titanium-Niobium Implant for Biomedical Applications: Microstructural Characteristics, In Vitro, Biocompatibility and Antibacterial Performance
,”
J. Alloys Compd.
,
697
, pp.
231
238
.
14.
Ng
,
H. P.
,
Douguet
,
E.
,
Bettles
,
C. J.
, and
Muddle
,
B. C.
,
2010
, “
Age-Hardening Behaviour of Two Metastable Beta-Titanium Alloys
,”
Mater. Sci. Eng., A
,
527
(
26
), pp.
7017
7026
.
15.
Komarov
,
F. F.
,
Konstantinov
,
V. M.
,
Kovalchuk
,
A. V.
,
Konstantinov
,
S. V.
, and
Tkachenko
,
2016
, “
The Effect of Steel Substrate Pre-Hardening on Structural, Mechanical, and Tribological Properties of Magnetron Sputtered TiN and TiAlN Coatings
,”
Wear
,
352–353
(
6
), pp.
92
101
.
16.
Song
,
M.
,
Zhang
,
M.
, and
Zhang
,
S.
,
2008
, “
In Situ Fabrication of TiC Particulates Locally Reinforced Aluminum Matrix Composites by Self-Propagating Reaction During Casting
,”
Mater. Sci. Eng., A
,
473
(
1–2
), pp.
166
171
.
17.
Oláh
,
N.
,
Fogarassy
,
Z.
,
Sulyok
,
A.
,
Veres
,
M.
,
Kaptay
,
G.
, and
Balázsi
,
K.
,
2016
, “
TiC Crystallite Formation and the Role of Interfacial Energies on the Composition During the Deposition Process of TiC/a:C Thin Films
,”
Surf. Coat. Technol.
,
302
, pp.
410
419
.
18.
Lindquist
,
M.
,
Wilhelmsson
,
O.
,
Jansson
,
U.
, and
Wiklund
,
U.
,
2009
, “
Tribofilm Formation From TiC and Nanocomposite TiAlC Coatings, Studied With Focused Ion Beam and Transmission Electron Microscopy
,”
Wear
,
266
(
9
), pp.
988
994
.
19.
Nikolov
,
K.
,
Kaestner
,
P.
,
Klages
,
C.-P.
,
Puls
,
St.
, and
Schuhmacher
,
B.
,
2016
, “
Low-Pressure Diffusion Chromising of Thin Low-Carbon Steel Sheet for Improved Surface and Bulk Properties
,”
J. Alloys Compd.
,
692
, pp.
101
107
.
20.
Xu
,
Y. R.
,
Liu
,
H. D.
,
Chen
,
Y. M.
,
Yousaf
,
M. I.
,
Luo
,
C.
, and
Wan
,
Q.
,
2015
, “
In Situ Synthesized TiC–DLC Nanocomposite Coatings on Titanium Surface in Acetylene Ambient
,”
Appl. Surf. Sci.
,
349
, pp.
93
100
.
21.
Belkin
,
P. N.
,
Kusmanov
,
S. A.
,
Dyakov
,
I. G.
,
Komissarova
,
M. R.
, and
Parfenyuk
,
V. I.
,
2016
, “
Anode Plasma Electrolytic Carburizing of Commercial Pure Titanium
,”
Surf. Coat. Technol.
,
307
(Pt. C), pp.
1303
1309
.
22.
Luo
,
Y.
,
Yang
,
T.
, and
Liu
,
Q.
,
2016
, “
Friction and Wear of Diamond-Like Carbon Film Deposited on CoCrMo Alloy Under Different Lubrication
,”
Int. J. Mater. Res.
,
107
(
7
), pp.
631
636
.
23.
Shimizu
,
T.
,
Yang
,
M.
, and
Manabe
,
K. I.
,
2015
, “
Classification of Mesoscopic Tribological Properties Under Dry Sliding Friction for Microforming Operation
,”
Wear
,
330–331
(
11
), pp.
49
58
.
24.
Myant
,
C.
,
Underwood
,
R.
,
Fan
,
J.
, and
Cann
,
P. M.
,
2012
, “
Lubrication of Metal-on-Metal Hip Joints: The Effect of Protein Content and Load on Film Formation and Wear
,”
J. Mech. Behav. Biomed. Mater.
,
6
(
2
), pp.
30
40
.
25.
Diomidis
,
N.
,
Mischler
,
S.
,
More
,
N. S.
,
Roy
,
M.
, and
Paul
,
S. N.
,
2011
, “
Fretting-Corrosion Behavior of β Titanium Alloys in Simulated Synovial Fluid
,”
Wear
,
271
(
7–8
), pp.
1093
1102
.
26.
Ganesh
,
B.
,
Sha
,
W.
,
Ramanaiah
,
N.
, and
Krishnaiah
,
A.
,
2014
, “
Effect of Shotpeening on Sliding Wear and Tensile Behavior of Titanium Implant Alloys
,”
Mater. Des.
,
56
(
4
), pp.
480
486
.
27.
Duan
,
H. Q.
,
Han
,
Y. F.
,
Wei-Jie
,
L. Ü.
,
Mao
,
J. W.
,
Wang
,
L. Q.
, and
Zhang
,
D.
,
2016
, “
Effect of Solid Carburization on Surface Microstructure and Hardness of Ti–6Al–4V Alloy and (TiB + La2O3)/Ti–6Al–4V Composite
,”
Trans. Nonferrous Met. Soc. China
,
26
(
7
), pp.
1871
1877
.
28.
Majumdar
,
P.
,
Singh
,
S. B.
, and
Chakraborty
,
M.
,
2008
, “
Wear Response of Heat-Treated Ti–13Zr–13Nb Alloy in Dry Condition and Simulated Body Fluid
,”
Wear
,
264
(
11–12
), pp.
1015
1025
.
You do not currently have access to this content.