In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.

References

References
1.
Petrusevich
,
A. I.
,
1951
, “
Fundamental Conclusions From the Contact-Hydrodynamic Theory of Lubrication
,”
Izv. Akad. Nauk SSR, Otd. Tekh. Nauk
,
2
, pp.
209
233
.
2.
Ranger
,
A. P.
,
Fettles
,
C. M. M.
, and
Cameron
,
A.
,
1975
, “
The Solution of the Point Contact Elastohydrodynamic Problem
,”
Proc. R. Soc. London
,
346
(
1645
), pp.
227
244
.
3.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts—Part 1: Theoretical Formulation
,”
ASME J. Lubr. Technol.
,
98
(
2
), pp.
223
229
.
4.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts—Part 2: Ellipticity Parameter Results
,”
ASME J. Lubr. Technol.
,
98
(
3
), pp.
375
383
.
5.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elatohydrodynamic Lubrication of Point Contacts—Part 3: Fully Flooded Results
,”
ASME J. Lubr. Technol.
,
99
(
2
), pp.
264
276
.
6.
Chittenden
,
R. J.
,
Dowson
,
D.
,
Dunn
,
J. F.
, and
Taylor
,
C. M.
,
1985
, “
A Theoretical Analysis of the Isothermal Elastohydrodynamic Lubrication of Concentrated Contacts—Part II: General Case, With Lubricant Entrainment Along Either Principal Axis of the Hertzian Contact Ellipse or at Some Intermediate Angle
,”
Proc. R. Soc. London
,
397
(
1813
), pp.
271
294
.
7.
Jalali-Vahid
,
D.
,
Rahnejat
,
H.
,
Gohar
,
R.
, and
Jin
,
Z. M.
,
2000
, “
Prediction of Oil-Film Thickness and Shape in Elliptical Point Contacts Under Combined Rolling and Sliding Motion
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
5
), pp.
427
437
.
8.
Wang
,
J.
,
Qu
,
S.
, and
Yang
,
P.
,
2001
, “
Simplified Multigrid Technique for the Numerical Solution to the Steady-State and Transient EHL Line Contacts and the Arbitrary Entrainment EHL Point Contacts
,”
Tribol. Int.
,
34
(
3
), pp.
191
202
.
9.
Wang
,
J.
,
Yang
,
P.
,
Kaneta
,
M.
, and
Nishikawa
,
H.
,
2003
, “
On the Surface Dimple Phenomena in Elliptical TEHL Contacts With Arbitrary Entrainment
,”
ASME J. Tribol.
,
125
(
1
), pp.
102
109
.
10.
Omasta
,
M.
,
Křupka
,
I.
, and
Hartl
,
M.
,
2013
, “
Effect of Surface Velocity Directions on Elastohydrodynamic Film Shape
,”
Tribol. Trans.
,
56
(
2
), pp.
301
309
.
11.
Stahl
,
K.
,
Michaelis
,
K.
,
Mayer
,
J.
,
Weigl
,
A.
,
Lohner
,
T.
,
Omasta
,
M.
,
Hartl
,
M.
, and
Krupka
,
I.
,
2013
, “
Theoretical and Experimental Investigations on EHL Point Contacts With Different Entrainment Velocity Directions
,”
Tribol. Trans.
,
56
(
5
), pp.
728
738
.
12.
Pu
,
W.
,
Wang
,
J.
,
Zhang
,
Y.
, and
Zhu
,
D.
,
2014
, “
A Theoretical Analysis of the Mixed Elastohydrodynamic Lubrication in Elliptical Contacts With an Arbitrary Entrainment Angle
,”
ASME J. Tribol.
,
136
(
4
), p.
041505
.
13.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
Effect of Surface Roughness Orientation on the Central Film Thickness in EHD Contacts
,”
Fifth Leeds-Lyon Symposium on Tribology
, Lyon, France, pp.
15
21
.https://www.researchgate.net/publication/279563502_Effect_of_Surface_Roughness_Orientation_on_the_Central_Film_Thickness_in_EHD_Contacts
14.
Majumdar
,
B. C.
, and
Hamrock
,
B. J.
,
1982
, “
Effect of Surface Roughness on Elastohydrodynamic Line Contact
,”
ASME J. Lubr. Technol.
,
104
(
3
), pp.
401
407
.
15.
Zhu
,
D.
,
Cheng
,
H. S.
, and
Hamrock
,
B. J.
,
1990
, “
Effect of Surface Roughness on Pressure Spike and Film Constriction in Elastohydrodynamically Lubricated Line Contacts
,”
Tribol. Trans.
,
33
(
2
), pp.
267
273
.
16.
Akbarzadeh
,
S.
, and
Khonsari
,
M. M.
,
2010
, “
On the Prediction of Running-In Behavior in Mixed-Lubrication Line Contact
,”
ASME J. Tribol.
,
132
(
3
), p.
032102
.
17.
Lubrecht
,
A. A.
,
1987
, “
The Numerical Solution of Elastohydrodynamic Lubricated Line and Point Contact Problems Using Multigrid Techniques
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
18.
Ai
,
X.
,
Cheng
,
H. S.
, and
Zheng
,
L.
,
1993
, “
A Transient Model for Micro-Elastohydrodynamic Lubrication With Three Dimensional Irregularities
,”
ASME J. Tribol.
,
115
(
1
), pp.
102
110
.
19.
Venner
,
C. H.
, and
Napel
,
W. E.
,
1992
, “
Surface Roughness Effects in an EHL Line Contact
,”
ASME J. Tribol.
,
114
(
3
), pp.
616
622
.
20.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
,
118
(
3
), pp.
473
483
.
21.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
1999
, “
The Study of Transition From Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,”
The Advancing Frontier of Engineering Tribology, STLE/ASME H.S. Cheng Tribology Surveillance
,
STLE
, Park Ridge, IL, pp.
150
156
.https://www.researchgate.net/publication/283921871_The_study_of_transition_from_full_film_elastohydrodynamic_to_mixed_and_boundary_lubrication
22.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
23.
Pu
,
W.
,
Wang
,
J. X.
,
Yang
,
R. S.
, and
Zhu
,
D.
,
2015
, “
Mixed Elastohydrodynamic Lubrication With 3D Machined Roughness in Spiral Bevel and Hypoid Gears
,”
ASME J. Tribol.
,
137
(
4
), p.
041503
.
24.
Pu
,
W.
,
Wang
,
J. X.
, and
Zhu
,
D.
,
2016
, “
Friction and Flash Temperature Prediction of Mixed Lubrication in Elliptical Contacts With Arbitrary Velocity Vector
,”
Tribol. Int.
,
99
, pp.
38
46
.
25.
Wedeven
,
L. D.
,
Evans
,
D.
, and
Cameron
,
A.
,
1971
, “
Optical Analysis of Ball Bearing Starvation
,”
ASME J. Lubr. Technol.
,
93
(
3
), pp.
349
361
.
26.
Chiu
,
Y. P.
,
1974
, “
Analysis and Prediction of Lubricant Film Starvation in Rolling Contact Systems
,”
ASLE Trans.
,
17
(
1
), pp.
22
35
.
27.
Pemberton
,
J.
, and
Cameron
,
A.
,
1976
, “
Mechanism of Fluid Replenishment in Elastohydrodynamic Contacts
,”
Wear
,
37
(
1
), pp.
185
190
.
28.
Svoboda
,
P.
,
Kostal
,
D.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2013
, “
Experimental Study of Starved EHL Contacts Based on Thickness of Oil Layer in the Contact Inlet
,”
Tribol. Int.
,
67
, pp.
140
145
.
29.
Menga
,
X.
,
Zhanga
,
B.
,
Jing
,
W.
, and
Qian
,
Z.
,
2017
, “
Experimental Observation on the Surface Dimple Variations in Starved EHL of Sliding Steel-Glass Point Contacts
,”
Tribol. Int.
,
105
, pp.
166
174
.
30.
Kingsbury
,
E.
,
1985
, “
Parched Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
107
(
2
), pp.
229
233
.
31.
Wolveridge
,
P. E.
,
Baglin
,
K. P.
, and
Archard
,
J. F.
,
1970
, “
The Starved Lubrication of Cylinders in Line Contact
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
1159
1169
.
32.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts—Part 4: Starvation Results
,”
ASME J. Lubr. Technol.
,
99
(
1
), pp.
15
23
.
33.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.
34.
Chevalier
,
F.
,
Lubrecht
,
A. A.
,
Cann
,
P. M. E.
,
Colin
,
F.
, and
Dalmaz
,
G.
,
1998
, “
Film Thickness in Starved EHL Point Contacts
,”
ASME J. Tribol.
,
120
(
1
), pp.
126
133
.
35.
Damiens
,
B.
,
Venner
,
C. H.
,
Cann
,
P. M. E.
, and
Lubrecht
,
A. A.
,
2004
, “
Starved Lubrication of Elliptical EHD Contacts
,”
ASME J. Tribol.
,
126
(
1
), pp.
105
111
.
36.
Wijnant
,
Y. H.
,
1998
, “
Contact Dynamics in the Field of Elastohydrodynamic Lubrication
,”
Ph.D. thesis
, University of Twente, Enschede, The Netherlands.https://research.utwente.nl/en/publications/contact-dynamics-in-the-field-of-elastohydrodynamic-lubrication
37.
Venner
,
C. H.
,
Berger
,
G.
, and
Lugt
,
P. M.
,
2004
, “
Waviness Deformation in Starved EHL Circular Contacts
,”
ASME J. Tribol.
,
126
(
2
), pp.
248
257
.
38.
Wang
,
W. Z.
,
Li
,
S. S.
,
Shen
,
D.
,
Zhang
,
S. G.
, and
Hu
,
Y. Z.
,
2012
, “
A Mixed Lubrication Model With Consideration of Starvation and Interasperity Cavitations
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
12
), pp.
1023
1038
.
39.
Jakobsson
,
B.
, and
Floberg
,
L.
,
1957
, “
The Finite Journal Bearing, Considering Vaporization
,” Chalmers University of Technology, Goteborg, Sweden, Report No.
190
.https://www.scopus.com/record/display.uri?eid=2-s2.0-0002023071&origin=inward&txGid=5a107dd45c4ab6378581c6c95433e9db
40.
Bair
,
S.
, and
Winer
,
W. O.
,
1979
, “
A Rheological Model for Elastohydrodynamic Contacts Based on Primary Laboratory Data
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
258
265
.
41.
Liu
,
Y. C.
,
Wang
,
Q.
,
Hu
,
Y. Z.
,
Wang
,
W. Z.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Schemes and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
.
42.
Zhu
,
D.
, and
Wang
,
Q.
,
2013
, “
Effect of Roughness Orientation on the Elastohydrodynamic Lubrication Film Thickness
,”
ASME J. Tribol.
,
135
(
3
), p.
031501
.
You do not currently have access to this content.