The nonlinear stability of a flexible rotor-bearing system supported on finite length journal bearings is addressed. A perturbation method of the Reynolds lubrication equation is presented to calculate the bearing nonlinear dynamic coefficients, a treatment that is suitable to any bearing geometry. A mathematical model, nonlinear coefficient-based model, is proposed for the flexible rotor-bearing system for which the journal forces are represented through linear and nonlinear dynamic coefficients. The proposed model is then used for nonlinear stability analysis in the system. A shooting method is implemented to find the periodic solutions due to Hopf bifurcations. Monodromy matrix associated to the periodic solution is found at any operating point as a by-product of the shooting method. The eigenvalue analysis of the Monodromy matrix is then carried out to assess the bifurcation types and directions due to Hopf bifurcation in the system for speeds beyond the threshold speed of instability. Results show that models with finite coefficients have remarkably better agreement with experiments in identifying the boundary between bifurcation regions. Unbalance trajectories of the nonlinear system are shown to be capable of capturing sub- and super-harmonics which are absent in the linear model trajectories.

References

References
1.
Ehrich
,
F. F.
,
1991
, “
Some Observations of Chaotic Vibration Phenomena in High-Speed Rotordynamics
,”
ASME J. Vib. Acoust.
,
113
(
1
), pp.
50
57
.
2.
Vance
,
J. M.
,
Zeidan
,
F. Y.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
Hoboken, NJ
.
3.
Lund
,
J.
,
1987
, “
Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings
,”
ASME J. Eng. Ind.
,
96
(2), pp. 509–517.
4.
Muszynska
,
A.
,
1988
, “
Stability of Whirl and Whip in Rotor/Bearing Systems
,”
J. Sound Vib.
,
127
(
1
), pp.
49
64
.
5.
Noah
,
S. T.
, and
Sundararajan
,
P.
,
1995
, “
Significance of Considering Nonlinear Effects in Predicting the Dynamic Behavior of Rotating Machinery
,”
J. Vib. Control
,
1
(
4
), pp.
431
458
.
6.
Hassard
,
B. D.
,
Kazarinoff
,
N. D.
, and
Wan
,
Y. H.
,
1981
,
Theory and Applications of Hopf Bifurcation
,
Cambridge University Press
,
New York
.
7.
Deepak
,
J.
, and
Noah
,
S.
,
1998
, “
Experimental Verification of Subcritical Whirl Bifurcation of a Rotor Supported on a Fluid Film Bearing
,”
ASME J. Tribol.
,
120
(
3
), pp.
605
609
.
8.
Myers
,
C.
,
1984
, “
Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
244
250
.
9.
Hollis
,
P.
, and
Taylor
,
D.
,
1986
, “
Hopf Bifurcation to Limit Cycles in Fluid Film Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
184
189
.
10.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics—Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
11.
Childs
,
D.
,
Moes
,
H.
, and
Van Leeuwen
,
H.
,
1977
, “
Journal Bearing Impedance Descriptions for Rotordynamic Applications
,”
ASME J. Lubr. Technol.
,
99
(
2
), pp.
198
210
.
12.
Adiletta
,
G.
,
Guido
,
A.
, and
Rossi
,
C.
,
1997
, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal Bearings—Part I: Theoretical Analysis
,”
Nonlinear Dyn.
,
14
(
1
), pp.
57
87
.
13.
Adiletta
,
G.
,
Guido
,
A.
, and
Rossi
,
C.
,
1997
, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal Bearings—Part II: Experimental Analysis
,”
Nonlinear Dyn.
,
14
(
2
), pp.
157
189
.
14.
Chen
,
C. L.
, and
Yau
,
H. T.
,
1998
, “
Chaos in the Imbalance Response of a Flexible Rotor Supported by Oil Film Bearings With Non-Linear Suspension
,”
Nonlinear Dyn.
,
16
(
1
), pp.
71
90
.
15.
Chang-Jian
,
C. W.
, and
Chen
,
C. K.
,
2007
, “
Bifurcation and Chaos Analysis of a Flexible Rotor Supported by Turbulent Long Journal Bearings
,”
Chaos Solitons Fractals
,
34
(
4
), pp.
1160
1179
.
16.
Ding
,
Q.
,
Cooper
,
J.
, and
Leung
,
A.
,
2002
, “
Hopf Bifurcation Analysis of a Rotor/Seal System
,”
J. Sound Vib.
,
252
(
5
), pp.
817
833
.
17.
Muszynska
,
A.
, and
Bently
,
D.
,
1990
, “
Frequency-Swept Rotating Input Perturbation Techniques and Identification of the Fluid Force Models in Rotor/Bearing/Seal Systems and Fluid Handling Machines
,”
J. Sound Vib.
,
143
(
1
), pp.
103
124
.
18.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Application of Hopf Bifurcation Theory to Rotor-Bearing Systems With Consideration of Turbulent Effects
,”
Tribol. Int.
,
39
(
7
), pp.
701
714
.
19.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
594
603
.
20.
Boyaci
,
A.
,
Hetzler
,
H.
,
Seemann
,
W.
,
Proppe
,
C.
, and
Wauer
,
J.
,
2009
, “
Analytical Bifurcation Analysis of a Rotor Supported by Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
(
4
), pp.
497
507
.
21.
Amamou
,
A.
, and
Chouchane
,
M.
,
2014
, “
Nonlinear Stability Analysis of Long Hydrodynamic Journal Bearings Using Numerical Continuation
,”
Mech. Mach. Theory
,
72
, pp.
17
24
.
22.
Boyaci
,
A.
,
Lu
,
D.
, and
Schweizer
,
B.
,
2015
, “
Stability and Bifurcation Phenomena of Laval/Jeffcott Rotors in Semi-Floating Ring Bearings
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1535
1561
.
23.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2017
, “
Shooting With Deflation Algorithm-Based Nonlinear Response and Neimark–Sacker Bifurcation and Chaos in Floating Ring Bearing Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031003
.
24.
Miraskari
,
M.
,
Hemmati
,
F.
, and
Gadala
,
M. S.
,
2017
, “
Nonlinear Dynamics of Flexible Rotors Supported on Journal Bearings—Part I: Analytical Bearing Model
,”
ASME J. Tribol.
, epub.
25.
Lund
,
J.
,
1964
, “
Spring and Damping Coefficients for the Tilting-Pad Journal Bearing
,”
ASLE Trans.
,
7
(
4
), pp.
342
352
.
26.
Lund
,
J.
,
1987
, “
Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings
,”
ASME J. Tribol.
,
109
(
1
), pp.
37
41
.
27.
Sawicki
,
J. T.
, and
Rao
,
T.
,
2004
, “
A Nonlinear Model for Prediction of Dynamic Coefficients in a Hydrodynamic Journal Bearing
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
507
513
.
28.
Meruane
,
V.
, and
Pascual
,
R.
,
2008
, “
Identification of Nonlinear Dynamic Coefficients in Plain Journal Bearings
,”
Tribol. Int.
,
41
(
8
), pp.
743
754
.
29.
Weimin, W.
,
Lihua, Y.
,
Tiejun, W.
, and
Lie, Y.
,
2012
, “
Nonlinear Dynamic Coefficients Prediction of Journal Bearings Using Partial Derivative Method
,”
Proc. Inst. Mech. Eng. Part J
,
226
(
4
), pp.
328
339
.http://journals.sagepub.com/doi/abs/10.1177/1350650111431526
30.
Yang
,
L.-H.
,
Wang
,
W.-M.
,
Zhao
,
S.-Q.
,
Sun
,
Y.-H.
, and
Yu
,
L.
,
2014
, “
A New Nonlinear Dynamic Analysis Method of Rotor System Supported by Oil-Film Journal Bearings
,”
Appl. Math. Modell.
,
38
(
21
), pp.
5239
5255
.
31.
Szeri
,
A. Z.
,
2011
,
Fluid Film Lubrication
,
Cambridge University Press
,
Cambridge, UK
.
32.
Dai
,
R.
,
Dong
,
Q.
, and
Szeri
,
A.
,
1992
, “
Approximations in Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
114
(
1
), pp.
14
25
.
33.
Lund
,
J. W.
,
1966
, “
Self-Excited Stationary Whirl Orbits of a Journal in a Sleeve Bearing
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
34.
Miraskari
,
M.
,
Hemmati
,
F.
,
Alqaradawi
,
M.
, and
Gadala
,
M. S.
,
2017
, “
Linear Stability Analysis of Finite Length Journal Bearings in Laminar and Turbulent Regimes
,”
Proc. Inst. Mech. Eng., Part J
, epub.
35.
Miraskari
,
M.
,
Hemmati
,
F.
,
Jalali
,
A.
,
Alqaradawi
,
M.
, and
Gadala
,
M. S.
,
2017
, “
A Robust Modification to the Universal Cavitation Algorithm in Journal Bearings
,”
ASME J. Tribol.
,
139
(
3
), p.
031703
.
36.
Kelley
,
C. T.
, and
Keyes
,
D. E.
,
1998
, “
Convergence Analysis of Pseudo-Transient Continuation
,”
SIAM J. Numer. Anal.
,
35
(
2
), pp.
508
523
.
37.
Vijayaraghavan
,
D.
, and
Keith
,
T.
,
1990
, “
An Efficient, Robust, and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,”
ASME J. Tribol.
,
112
(
1
), pp.
44
51
.
38.
Raimondi
,
A. A.
, and
Szeri
,
A. Z.
,
1984
, “
Journal and Thrust Bearings
,”
CRC Handbook of Lubrication (Theory and Practice of Tribology
),
E. R.
Booser
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
413
462
.
39.
Seydel
,
R.
,
2009
,
Practical Bifurcation and Stability Analysis
,
Springer Science and Business Media
,
New York
.
40.
Hale
,
J. K.
,
1969
,
Ordinary Differential Equations
, Wiley, Hoboken, NJ.
41.
Reithmeier
,
E.
,
1991
,
Periodic Solutions of Nonlinear Dynamical Systems
,
Springer
,
Berlin
.
42.
Rao
,
T.
, and
Sawicki
,
J. T.
,
2002
, “
Linear Stability Analysis for a Hydrodynamic Journal Bearing Considering Cavitation Effects
,”
Tribol. Trans.
,
45
(
4
), pp.
450
456
.
43.
Qiu
,
Z.
, and
Tieu
,
A.
,
1996
, “
The Effect of Perturbation Amplitudes on Eight Force Coefficients of Journal Bearings
,”
Tribol. Trans.
,
39
(
2
), pp.
469
475
.
44.
Vance
,
J. M.
,
1988
,
Rotordynamics of Turbomachinery
,
Wiley
,
Hoboken, NJ
.
45.
Muszynska
,
A.
,
1995
, “
Vibrational Diagnostics of Rotating Machinery Malfunctions
,”
Int. J. Rotating Mach.
,
1
(
3–4
), pp.
237
266
.
46.
Dimarogonas
,
A. D.
,
1996
, “
Vibration of Cracked Structures: A State of the Art Review
,”
Eng. Fract. Mech.
,
55
(
5
), pp.
831
857
.
47.
Muszynska
,
A.
,
1989
, “
Rotor-to-Stationary Element Sub-Related Vibration Phenomena in Rotating Machinery: Literature Survey
,”
Shock Vib. Dig.
,
21
(
3
), pp.
3
11
.
48.
Fan
,
C.-C.
,
Syu
,
J.-W.
,
Pan
,
M.-C.
, and
Tsao
,
W.-C.
,
2011
, “
Study of Start-Up Vibration Response for Oil Whirl, Oil Whip and Dry Whip
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
3102
3115
.
49.
Seydel
,
R.
,
1985
, “
Calculating the Loss of Stability by Transient Methods, With Application to Parabolic Partial Differential Equations
,”
Numerical Boundary Value ODEs
,
Springer
,
Boston, MA
, pp.
261
270
.
You do not currently have access to this content.