To determine the bifurcation types in a rotor-bearing system, it is required to find higher order derivatives of the bearing forces with respect to journal velocity and position. As closed-form expressions for journal bearing force are not generally available, Hopf bifurcation studies of rotor-bearing systems have been limited to simple geometries and cavitation models. To solve this problem, an alternative nonlinear coefficient-based method for representing the bearing force is presented in this study. A flexible rotor-bearing system is presented for which bearing force is modeled with linear and nonlinear dynamic coefficients. The proposed nonlinear coefficient-based model was found to be successful in predicting the bifurcation types of the system as well as predicting the system dynamics and trajectories at spin speeds below and above the threshold speed of instability.

References

References
1.
Muszynska
,
A.
,
1988
, “
Stability of Whirl and Whip in Rotor/Bearing Systems
,”
J. Sound Vib.
,
127
(
1
), pp.
49
64
.
2.
Noah
,
S. T.
, and
Sundararajan
,
P.
,
1995
, “
Significance of Considering Nonlinear Effects in Predicting the Dynamic Behavior of Rotating Machinery
,”
J. Vib. Control
,
1
(
4
), pp.
431
458
.
3.
Newkirk
,
B. L.
, and
Taylor
,
H. D.
,
1925
, “
Shaft Whipping Due to Oil Action in Journal Bearing
,”
Gen. Electr. Rev.
,
28
, pp.
559
568
.
4.
Hori
,
Y.
,
1959
, “
A Theory of Oil Whip
,”
ASME J. Appl. Mech.
,
26
, pp.
189
198
.
5.
Khonsari
,
M.
, and
Chang
,
Y.
,
1993
, “
Stability Boundary of Non-Linear Orbits Within Clearance Circle of Journal Bearings
,”
ASME J. Vib. Acoust.
,
115
(
3
), pp.
303
307
.
6.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Prediction of the Stability Envelope of Rotor-Bearing System
,”
ASME J. Vib. Acoust.
,
128
(
2
), pp.
197
202
.
7.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
, New York.
8.
Hassard
,
B. D.
,
Kazarinoff
,
N. D.
, and
Wan
,
Y. H.
,
1981
,
Theory and Applications of HOPF Bifurcation
, Cambridge University Press, Cambridge, UK.
9.
Boyaci
,
A.
,
Hetzler
,
H.
,
Seemann
,
W.
,
Proppe
,
C.
, and
Wauer
,
J.
,
2009
, “
Analytical Bifurcation Analysis of a Rotor Supported by Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
(
4
), pp.
497
507
.
10.
Chang-Jian
,
C. W.
, and
Chen
,
C. K.
,
2007
, “
Bifurcation and Chaos Analysis of a Flexible Rotor Supported by Turbulent Long Journal Bearings
,”
Chaos Solitons Fractals
,
34
(
4
), pp.
1160
1179
.
11.
Boyaci
,
A.
,
Lu
,
D.
, and
Schweizer
,
B.
,
2015
, “
Stability and Bifurcation Phenomena of Laval/Jeffcott Rotors in Semi-Floating Ring Bearings
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1535
1561
.
12.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2016
, “
Shooting With Deflation Algorithm-Based Nonlinear Response and Neimark-Sacker Bifurcation and Chaos in Floating Ring Bearing Systems
,”
ASME J. Comput. Nonlin. Dyn.
,
12
(
3
), p.
031003
.
13.
Raimondi
,
A. A.
, and
Szeri
,
A. Z.
,
1984
, “
Journal and Thrust Bearings
,”
CRC Handbook of Lubrication
(Theory and Practice of Tribology), Vol. 2,
E. R.
Booser
, ed., CRC Press, Boca Raton, FL, pp.
413
462
.
14.
Szeri
,
A. Z.
,
2011
,
Fluid Film Lubrication
,
Cambridge University Press
,
Cambridge, UK
.
15.
Hollis
,
P.
, and
Taylor
,
D.
,
1986
, “
Hopf Bifurcation to Limit Cycles in Fluid Film Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
184
189
.
16.
Myers
,
C.
,
1984
, “
Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings
,”
ASME J. Appl. Mech.
,
51
(
2
), pp. 244–250.
17.
Noah
,
S.
, and
Choi
,
Y. S.
,
1987
, “
Nonlinear Steady-State Response of a Rotor-Support System
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
109
(
3
), pp.
255
261
.
18.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Application of Hopf Bifurcation Theory to Rotor-Bearing Systems With Consideration of Turbulent Effects
,”
Tribol. Int.
,
39
(
7
), pp.
701
714
.
19.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
594
603
.
20.
Childs
,
D.
,
Moes
,
H.
, and
Van Leeuwen
,
H.
,
1977
, “
Journal Bearing Impedance Descriptions for Rotordynamic Applications
,”
ASME J. Lubr. Technol.
,
99
(
2
), pp.
198
210
.
21.
Lund
,
J.
,
1964
, “
Spring and Damping Coefficients for the Tilting-Pad Journal Bearing
,”
ASLE Trans.
,
7
(
4
), pp.
342
352
.
22.
Lund
,
J.
,
1987
, “
Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings
,”
ASME J. Tribol.
,
109
(
1
), pp.
37
41
.
23.
Miraskari
,
M.
,
Hemmati
,
F.
,
Jalali
,
A.
,
Alqaradawi
,
M.
, and
Gadala
,
M. S.
,
2016
, “
A Robust Modification to the Universal Cavitation Algorithm in Journal Bearings
,”
ASME J. Tribol.
,
139
(
3
), p.
031703
.
24.
Sawicki
,
J. T.
, and
Rao
,
T.
,
2004
, “
A Nonlinear Model for Prediction of Dynamic Coefficients in a Hydrodynamic Journal Bearing
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
507
513
.
25.
Meruane
,
V.
, and
Pascual
,
R.
,
2008
, “
Identification of Nonlinear Dynamic Coefficients in Plain Journal Bearings
,”
Tribol. Int.
,
41
(
8
), pp.
743
754
.
26.
Weimin
,
W.
,
Lihua
,
Y.
,
Tiejun
,
W.
, and
Lie
,
Y.
,
2012
, “
Nonlinear Dynamic Coefficients Prediction of Journal Bearings Using Partial Derivative Method
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
4
), pp.
328
339
.
27.
Yang
,
L.-H.
,
Wang
,
W.-M.
,
Zhao
,
S.-Q.
,
Sun
,
Y.-H.
, and
Yu
,
L.
,
2014
, “
A New Nonlinear Dynamic Analysis Method of Rotor System Supported by Oil-Film Journal Bearings
,”
Appl. Math. Modell.
,
38
(
21
), pp.
5239
5255
.
28.
Hopf
,
E.
,
1942
, “
Abzweigung Einer periodischen Lösung von einer stationären Lösung eines Differentialsystems
,”
Ber. Math. Phys. Kl Sächs. Akad. Wiss. Leipzig
,
94
, pp.
1
22
.
29.
Marsden
,
J. E.
, and
McCracken
,
M.
,
2012
,
The Hopf Bifurcation and Its Applications
,
Springer
, New York.
30.
Hassard
,
B.
, and
Wan
,
Y.
,
1978
, “
Bifurcation Formulae Derived From Center Manifold Theory
,”
J. Math. Anal. Appl.
,
63
(
1
), pp.
297
312
.
31.
Andronov
,
A. A.
, Vitt, A. A., and Khaikin, S. E.,
1966
,
Theory of Oscillators
, Pergamon Press, Oxford, UK.
You do not currently have access to this content.