This paper presents a general formulation of the Reynolds equation for gas and liquid lubricants, including cavitation. A finite element solution of this equation is also given. The model is compared to those obtained in the previous literature on liquid and gas lubrication. One of the advantages of the model is the continuous description of cavitation in liquid lubrication. It is possible to deal with all lubricants by adjusting the amount of gas in the fluid.

References

References
1.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
,
177
, pp.
157
234
.
2.
Braun
,
M.
, and
Hannon
,
W.
,
2010
, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
Proc. Inst. Mech. Eng., Part J
,
224
(
9
), pp.
839
863
.
3.
Qui
,
Y.
, and
Khonsari
,
M.
,
2009
, “
On the Prediction of Cavitation in Dimples Using a Mass-Conservative Algorithm
,”
ASME J. Tribol.
,
131
(
4
), p.
041702
.
4.
Elrod
,
H.
, and
Adams
,
M.
,
1974
, “
A Computer Program for Cavitation and Starvation Problems
,”
First Leeds-Lyon Symposium on Tribology—Cavitation and Related Phenomena in Lubrication
, Leeds, UK, Sept., pp.
37
41
.
5.
Elrod
,
H.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.
6.
Payvar
,
P.
, and
Salant
,
R.
,
1992
, “
A Computational Method for Cavitation in a Wavy Mechanical Seal
,”
ASME J. Tribol.
,
114
(
1
), pp.
199
204
.
7.
Bonneau
,
D.
, and
Hajjam
,
D.
,
2001
, “
Modelisation de la Rupture et de la Reformation des Film Lubrifiants Dans les Contacts Elastohydrodynamiques
,”
Rev. Eur. Elem. Finis,
10
(
6–7
), pp.
679
704
.
8.
Ausas
,
R.
,
Jai
,
M.
, and
Buscaglia
,
G.
,
2009
, “
A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation
,”
ASME J. Tribol.
,
131
(
3
), p.
031702
.
9.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2013
, “
On the Magnitude of Cavitation Pressure of Steady-State Lubrication
,”
Tribol. Lett.
,
51
(
1
), pp.
153
160
.
10.
Singhal
,
A.
,
Athavale
,
M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathamtical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
11.
Gehannin
,
J.
,
Arghir
,
M.
, and
Bonneau
,
O.
,
2009
, “
Evaluation of Rayleigh-Plesset Equation Based Cavitation Models for Squeeze Film Dampers
,”
ASME J. Tribol.
,
131
(
2
), p.
024501
.
12.
Geike
,
T.
, and
Popov
,
V.
,
2009
, “
A Bubble Dynamics Based Approach to the Simulation of Cavitation in Lubricated Contacts
,”
ASME J. Tribol.
,
131
(
1
), p.
011704
.
13.
Song
,
Y.
,
Gu
,
C.
, and
Ren
,
X.
,
2015
, “
Development and Validation of a Gaseous Cavitation Model for Hydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng. Part J
,
229
(
10
), pp.
1227
1238
.
14.
Gehannin
,
J.
,
Arghir
,
M.
, and
Bonneau
,
O.
,
2016
, “
A Volume of Fluid Method for Air Ingestion in Squeeze Film Dampers
,”
Tribol. Trans.
,
59
(
2
), pp.
208
218
.
15.
Brunetiere
,
N.
,
2016
, “
Modelling of Reverse Flows in a Mechanical Seal
,”
Tribol. Online
,
11
(
2
), pp.
94
101
.
16.
Bayada
,
G.
, and
Chupin
,
L.
,
2013
, “
Compressible Fluid Model for Hydrodynamic Lubrication Cavitation
,”
ASME J. Tribol.
,
135
(
4
), pp.
041702
041713
.
17.
Cross
,
A. T.
,
Sadeghi
,
F.
,
Cao
,
L.
,
Rateick
,
R. G.
, Jr.
, and
Rowan
,
S.
,
2012
, “
Flow Visualization in a Pocketed Thrust Washer
,”
Tribol. Trans.
,
55
(
5
), pp.
571
581
.
18.
Zhang
,
J.
, and
Meng
,
Y.
,
2012
, “
Direct Observation of Cavitation Phenomenon and Hydrodynamic Lubrication Analysis of Textured Surfaces
,”
Tribol. Lett.
,
46
(
2
), pp.
147
158
.
19.
Gross
,
W.
,
1959
, “
A Gas Film Lubrication Study––Part I: Some Theoretical Analyse of Slider Bearings
,”
IBM J. Res. Dev.
,
3
(
3
), pp.
237
255
.
20.
Muijderman
,
E.
,
1965
, “
Spiral Groove Bearings
,”
Ind. Lubr. Tribol.
,
17
(
1
), pp.
12
17
.
21.
Bonneau
,
D.
,
Huitric
,
J.
, and
Tournerie
,
B.
,
1993
, “
Finite Element Analysis of Grooved Gas Thrust Bearings and Grooved Gas Face Seals
,”
ASME J. Tribol.
,
115
(
3
), pp.
348
354
.
22.
Hernandez
,
P.
, and
Boudet
,
J.
,
1995
, “
Modelling of the Behaviour of Dynamical Gas Seals: Calculation With a Finite Element Method Implicitly Assuring the Continuity of Flow
,”
Proc. Inst. Mech. Eng. Part J
,
209
(
3
), pp.
195
201
.
23.
Faria
,
M.
,
2001
, “
An Efficient Finite Element Procedure for Analysis of High-Speed Spiral Groove Gas Face Seals
,”
ASME J. Tribol.
,
123
(
1
), pp.
205
210
.
24.
Brunetiere
,
N.
, and
Wang
,
Q.
,
2011
, “
A Simplified Mass-Conservating and Continuous Cavitation Model
,”
STLE Annual Meeting
, Atlanta, GA, May 15–19.
25.
Wallis
,
G.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
, New York.
26.
Migout
,
F.
,
Brunetiere
,
N.
, and
Tournerie
,
B.
,
2015
, “
Study of the Fluid Film Vaporization in the Interface of a Mechanical Face Seal
,”
Tribol. Int.
,
92
, pp.
84
95
.
27.
Saadat
,
N.
, and
Flint
,
W.
,
1996
, “
Expressions for the Viscosity of Liquid/Vapour Mixtures: Predicted and Measured Pressure Distributions in a Hydrostatic Bearing
,”
Proc. Inst. Mech. Eng. Part J
,
210
(
1
), pp.
75
79
.
28.
Heinrich
,
J.
,
Huyakorn
,
P.
,
Zienkiewicz
,
O.
, and
Mitchell
,
A.
,
1977
, “
An Upwind Finite Element Scheme for Two Dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
131
143
.
29.
Qiu
,
Y.
, and
Khonsari
,
M.
,
2011
, “
Investigation of Tribological Behaviors of Annular Rings With Spiral Groove
,”
Tribol. Int.
,
44
(
12
), pp.
1610
1619
.
30.
Zienkiewicz
,
O.
, and
Taylor
,
R.
,
2000
,
The Finite Element Method
(The Basis),
5th ed.
, Vol.
1
,
Butterworth-Heineman
,
Oxford, UK
.
31.
Zienkiewicz
,
O.
, and
Taylor
,
R.
,
2000
,
The Finite Element Method
(Fluid Dynamics),
5th ed.
, Vol.
3
,
Butterworth Heinemann
,
Oxford, UK
.
32.
Brunetiere
,
N.
, and
Tournerie
,
B.
,
2005
, “
Finite Element Solution of the Energy Equation in Lubricated Contacts: Application to Mechanical Face Seals
,”
Eur. J. Comput. Mech.
,
14
(
2–3
), pp.
213
235
.
You do not currently have access to this content.