This paper presents analytical bifurcations analysis of a “Jeffcott” type rigid rotor supported by five-pad tilting pad journal bearings (TPJBs). Numerical techniques such as nonautonomous shooting/arc-length continuation, Floquet theory, and Lyapunov exponents are employed along with direct numerical integration (NI) to analyze nonlinear characteristics of the TPJB-rotor system. A rocker pivot type five-pad TPJB is modeled with finite elements to evaluate the fluid pressure distribution on the pads, and the integrated fluid reaction force and moment are utilized to determine coexistent periodic solutions and bifurcations scenarios. The numerical shooting/continuation algorithms demand significant computational workload when applied to a rotor supported by a finite element bearing model. This bearing model may be significantly more accurate than the simplified infinitely short-/long-bearing approximations. Consequently, the use of efficient computation techniques such as deflation and parallel computing methods is applied to reduce the execution time. Loci of bifurcations of the TPJB-rigid rotor are determined with extensive numerical simulations with respect to both rotor spin speed and unbalance force magnitude. The results show that heavily loaded bearings and/or high unbalance force may induce consecutive transference of response in forms of synchronous to subsynchronous, quasi-periodic responses, and chaotic motions. It is revealed that the coexistent responses and their solution manifolds are obtainable and stretch out with selections of pad preload, pivot offset, and lubricant viscosity so that the periodic doubling bifurcations, saddle node bifurcations, and corresponding local stability are reliably determined by searching parameter sets. In case the system undergoes an aperiodic state, the rate of divergence/convergence of the attractor is examined quantitatively by using the maximum Lyapunov exponent (MLE).

References

References
1.
Pagano
,
S.
,
Rocca
,
E.
,
Russo
,
M.
, and
Russo
,
R.
,
1995
, “
Dynamic Behaviour of Tilting-Pad Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
209
(
4
), pp.
275
285
.
2.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
1996
, “
Non-Linear Stability Analysis of a Rigid Rotor on Tilting Pad Journal Bearings
,”
Tribol. Int.
,
29
(
7
), pp.
571
578
.
3.
Abu-Mahfouz
,
I.
, and
Adams
,
M. L.
,
2005
, “
Numerical Study of Some Nonlinear Dynamics of a Rotor Supported on a Three-Pad Tilting Pad Journal Bearing (TPJB)
,”
ASME J. Vib. Acoust.
,
127
(
3
), pp.
262
272
.
4.
Cao
,
J.
,
Dimond
,
T. W.
, and
Allaire
,
P. E.
,
2013
, “
Nonlinear Modeling of Tilting-Pad Bearings With Application to a Flexible Rotor Analysis
,”
ASME
Paper No. DETC2013-13712.
5.
Gadangi
,
R. K.
, and
Palazzolo
,
A. B.
,
1995
, “
Transient Analysis of Tilt Pad Journal Bearings Including Effects of Pad Flexibility and Fluid Film Temperature
,”
ASME J. Tribol.
,
117
(
2
), pp.
302
307
.
6.
Gadangi
,
R. K.
,
Palazzolo
,
A. B.
, and
Kim
,
J.
,
1996
, “
Transient Analysis of Plain and Tilt Pad Journal Bearings Including Fluid Film Temperature Effects
,”
ASME J. Tribol.
,
118
(
2
), pp.
423
430
.
7.
Suh
,
J.
, and
Palazzolo
,
A. B.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model
,”
ASME J. Tribol.
,
136
(
3
), p.
031706
.
8.
Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.
9.
Nataraj
,
C.
, and
Nelson
,
H. D.
,
1989
, “
Periodic Solutions in Rotor Dynamic Systems With Nonlinear Supports: A General Approach
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
111
(
2
), pp.
187
193
.
10.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method—Application to Rotor Systems
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
9
20
.
11.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1998
, “
An Algorithm for Response and Stability of Large Order Non-Linear Systems—Application to Rotor Systems
,”
J. Sound Vib.
,
214
(
4
), pp.
695
723
.
12.
Boyaci
,
A.
,
Hetzler
,
H.
,
Seemann
,
W.
,
Proppe
,
C.
, and
Wauer
,
J.
,
2009
, “
Analytical Bifurcation Analysis of a Rotor Supported by Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
(
4
), pp.
497
507
.
13.
Boyaci
,
A.
,
Seemann
,
W.
, and
Proppe
,
C.
,
2011
, “
Bifurcation Analysis of a Turbocharger Rotor Supported by Floating Ring Bearings
,” IUTAM Symposium on Emerging Trends in Rotor Dynamics, Springer, Berlin, pp.
335
347
.
14.
Amamou
,
A.
, and
Chouchane
,
M.
,
2014
, “
Nonlinear Stability Analysis of Long Hydrodynamic Journal Bearings Using Numerical Continuation
,”
Mech. Mach. Theory
,
72
, pp.
17
24
.
15.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley
,
New York
.
16.
Ojika
,
T.
,
Watanabe
,
S.
, and
Mitsui
,
T.
,
1983
, “
Deflation Algorithm for the Multiple Roots of a System of Nonlinear Equations
,”
J. Math. Anal. Appl.
,
96
(
2
), pp.
463
479
.
17.
Kalantonis
,
V. S.
,
Perdios
,
E. A.
,
Perdiou
,
A. E.
,
Ragos
,
O.
, and
Vrahatis
,
M. N.
,
2003
, “
Deflation Techniques for the Determination of Periodic Solutions of a Certain Period
,”
Astrophys. Space Sci.
,
288
(
4
), pp.
489
497
.
18.
Mondy
,
R. E.
,
2005
, “
The Diagnosing and Corrective Actions Taken to Reduce the Effects of Steam Whirl in a General Electric D-11 Steam Turbine
,”
International Symposium for Stability Control of Rotating Machinery (ISCORMA-3)
, Cleveland, OH, Sept. 19–23, pp.
19
23
.
19.
Foiles
,
W. C.
,
Allaire
,
P. E.
, and
Gunter
,
E. J.
,
1998
, “
Review: Rotor Balancing
,”
Shock Vib.
,
5
(
5–6
), pp.
325
336
.
20.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2016
, “
Shooting With Deflation Algorithm-Based Nonlinear Response and Neimark-Sacker Bifurcation and Chaos in Floating Ring Bearing Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031003
.
21.
Mongkolcheep
,
K.
,
Ruimi
,
A.
, and
Palazzolo
,
A. B.
,
2015
, “
Modal Reduction Technique for Predicting the Onset of Chaotic Behavior Due to Lateral Vibrations in Drillstrings
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021003
.
You do not currently have access to this content.